🚰
Australian Drinking Water Guidelines
Go to NHMRC's website
  • Australian Drinking Water Guidelines
  • Copyright
  • Table of updates
  • Contents
  • Figures
  • Tables
  • Boxes
  • Introduction
    • Chapter 1: Introduction
      • 1.1 Guiding principles
      • 1.2 About the Guidelines
        • 1.2.1 Scope of the Guidelines
        • 1.2.2 Purpose of the Guidelines
        • 1.2.3 Structure of the Guidelines
      • 1.3 Water quality characteristics
        • 1.3.1 Introduction
        • 1.3.2 Health-based targets
        • 1.3.3 Microbial health-based targets
        • 1.3.4 Physical and chemical guideline values
        • 1.3.5 Radiological screening and reference values
      • 1.4 Community consultation
      • 1.5 Development of the Guidelines
        • 1.5.1 Acknowledgments
      • 1.6 Future revisions of the Guidelines
      • 1.7 References
  • Part 1: Management of Drinking Water Quality
    • Chapter 2: Framework for Management of Drinking Water Quality: overview
      • 2.1 A preventive strategy from catchment to consumer
      • 2.2 Structure of the Framework
      • 2.3 Benefits of the Framework
      • 2.4 The need for multi-agency involvement
      • 2.5 Applying the Framework
      • 2.6 Correlations of the Framework with other systems
    • Chapter 3: Framework for Management of Drinking Water Quality: the twelve elements
      • 3.1 Commitment to drinking water quality management (element 1)
        • 3.1.1 Drinking water quality policy
        • 3.1.2 Regulatory and formal requirements
        • 3.1.3 Engaging stakeholders
      • 3.2 Assessment of the drinking water supply system (element 2)
        • 3.2.1 Water supply system analysis
        • 3.2.2 Assessment of water quality data
        • 3.2.3 Hazard identification and risk assessment
      • 3.3 Preventive measures for drinking water quality management (element 3)
        • 3.3.1 Preventive measures and multiple barriers
        • 3.3.2 Critical control points
      • 3.4 Operational procedures and process control (element 4)
        • 3.4.1 Operational procedures
        • 3.4.2 Operational monitoring
        • 3.4.3 Corrective action
        • 3.4.4 Equipment capability and maintenance
        • 3.4.5 Materials and chemicals
      • 3.5 Verification of drinking water quality (element 5)
        • 3.5.1 Drinking water quality monitoring
        • 3.5.2 Consumer satisfaction
        • 3.5.3 Short-term evaluation of results
        • 3.5.4 Corrective action
      • 3.6 Management of incidents and emergencies (element 6)
        • 3.6.1 Communication
        • 3.6.2 Incident and emergency response protocols
      • 3.7 Employee awareness and training (element 7)
        • 3.7.1 Employee awareness and involvement
        • 3.7.2 Employee training
      • 3.8 Community involvement and awareness (element 8)
        • 3.8.1 Community consultation
        • 3.8.2 Communication
      • 3.9 Research and development (element 9)
        • 3.9.1 Investigative studies and research monitoring
        • 3.9.2 Validation of processes
        • 3.9.3 Design of equipment
      • 3.10 Documentation and reporting (element 10)
        • 3.10.1 Management of documentation and records
        • 3.10.2 Reporting
      • 3.11 Evaluation and audit (element 11)
        • 3.11.1 Long-term evaluation of results
        • 3.11.2 Audit of drinking water quality management
      • 3.12 Review and continual improvement (element 12)
        • 3.12.1 Review by senior executive
        • 3.12.2 Drinking water quality management improvement plan
      • 3.13 References
    • Chapter 4: Framework for the Management of Drinking Water Quality: application to small water supplies
      • 4.1 Introduction
      • 4.2 Applying the Framework
        • 4.2.1 Assessment of the drinking water supply
        • 4.2.2 Preventive measures for drinking water quality management
        • 4.2.3 Implementation of operational procedures and process control
        • 4.2.4 Verification of drinking water quality
      • 4.3 Individual household supplies
      • 4.4 Reference
  • Part 2: Description of Water Quality
    • Chapter 5: Microbial Quality of Drinking Water (Updated 2022)
      • 5.1 Introduction
      • 5.2 Microorganisms in drinking water
      • 5.3 Assessing microbial risk
      • 5.4 Enteric pathogens
        • 5.4.1 Enteric pathogens of concern in drinking water
        • 5.4.2 Contamination of source waters with enteric pathogens
        • 5.4.3 Management of risk from enteric pathogens
      • 5.5 Opportunistic pathogens
      • 5.6 Cyanobacteria
      • 5.7 Nuisance organisms
        • 5.7.1 Organisms causing taste and odour problems
        • 5.7.2 Organisms causing colour problems
        • 5.7.3 Deposits due to iron and manganese bacteria
        • 5.7.4 Corrosion problems due to iron and sulphur bacteria
        • 5.7.5 Problems caused by large numbers of microorganisms
      • 5.8 References
    • Chapter 6: Physical and Chemical Quality of Drinking Water
      • 6.1 Introduction
      • 6.2 Physical quality of drinking water
        • 6.2.1 An overview of physical characteristics
        • 6.2.2 Approach used in derivation of guidelines values for physical characteristics
      • 6.3 Chemical quality of drinking water
        • 6.3.1 Inorganic chemicals
        • 6.3.2 Organic compounds (Revised 2011)
        • 6.3.3 Approach used in derivation of guideline values for chemicals
      • 6.4 Differences between Australian and WHO guideline values
      • 6.5 National and international guideline values (2016)
      • 6.6 References
    • Chapter 7: Radiological Quality of Drinking Water (Updated 2022)
      • 7.1 Introduction
      • 7.2 Sources of radiation in the environment and in drinking water
      • 7.3 Health effects of radiation
      • 7.4 Exposure to radiation
      • 7.5 Units of radioactivity and radiation dose measurement
        • 7.5.1 Units of radioactivity and radiation dose
        • 7.5.2 Converting intake to radiation dose
        • 7.5.3 Average dose of radiation
      • 7.6 Approach for derivation of reference levels and screening values for radionuclides
        • 7.6.1 System for radiation protection
        • 7.6.2 Estimation of the dose from radionuclides in water
        • 7.6.3 Estimation of risk from low-level radiation
        • 7.6.4 Reference levels and screening values for drinking water
        • 7.6.5 Application of reference levels
        • 7.6.6 Remedial measures
      • 7.7 References
    • Chapter 8: Drinking Water Treatment Chemicals (Revised 2006)
      • 8.1 Introduction
      • 8.2 Scope and limit of application of this chapter
      • 8.3 Overview of chemical treatment processes
        • 8.3.1 Control of algae
        • 8.3.2 Coagulation and flocculation
        • 8.3.3 Adsorption
        • 8.3.4 Softening
        • 8.3.5 Oxidation
        • 8.3.6 Disinfection
        • 8.3.7 Adjustment of pH
        • 8.3.8 Addition of buffering capacity
        • 8.3.9 Corrosion inhibition
      • 8.4 Public health measures
        • 8.4.1 Fluoridation
      • 8.5 Assessment of Chemicals acceptable for use in drinking water treatment (revised 2016)
        • 8.5.1 Chemicals assessed prior to 2004
        • 8.5.2 New water treatment chemicals
      • 8.6 Quality assurance for drinking water treatment chemicals
        • 8.6.1 Risks associated with drinking water chemicals
        • 8.6.2 Managing risks
        • 8.6.3 Specifications for the supply of drinking water treatment chemicals
      • 8.7 Monitoring and analytical requirements
      • 8.8 Contaminants in drinking water treatment chemicals
      • 8.9 Useful contacts
      • 8.10 References
  • Part 3: Monitoring
    • Chapter 9: Overview of monitoring (Revised 2021)
      • 9.1 Introduction
      • 9.2 Monitoring overview
        • 9.2.1 Monitoring priorities
        • 9.2.2 Principles of monitoring frequency
        • 9.2.3 Catchment-to-consumer monitoring
      • 9.3 Developing a monitoring program
      • 9.4 Operational monitoring
        • 9.4.1 Operational characteristics
        • 9.4.2 Target criteria
        • 9.4.3 Critical limits at critical control points
        • 9.4.4 Corrective action
        • 9.4.5 Operational monitoring frequency
        • 9.4.6 Chlorination as a critical control point: an example
      • 9.5 Verification of drinking water quality
        • 9.5.1 Monitoring consumer satisfaction
        • 9.5.2 Drinking water quality monitoring
      • 9.6 Water quality issues beyond the point of supply
      • 9.7 Investigative studies and research monitoring
      • 9.8 Validation of barrier performance
      • 9.9 Incident and emergency response monitoring
      • 9.10 Reliability of monitoring data
        • 9.10.1 Sample integrity
        • 9.10.2 Methods
        • 9.10.3 Detection limits
        • 9.10.4 Measurement uncertainty
        • 9.10.5 Field testing
      • 9.11 Monitoring advice for small, remote or community-managed water supplies
      • 9.12 Assessing the significance of short-term exceedances of health-based guideline values
      • 9.13 References
    • Chapter 10: Monitoring for specific characteristics in drinking water (Updated 2022)
      • 10.1 Introduction
      • 10.2 Assessing safety: short-term evaluation of monitoring
        • 10.2.1 Short-term evaluation of operational monitoring
        • 10.2.2 Short-term evaluation of drinking water quality monitoring
      • 10.3 Assessing performance: long-term evaluation of monitoring
        • 10.3.1 Long-term evaluation of microbial performance
        • 10.3.2 Long-term evaluation of health-based chemical performance
        • 10.3.3 Long-term evaluation of aesthetic performance
        • 10.3.4 Long-term evaluation of consumer satisfaction
        • 10.3.5 Improvement plan
        • 10.3.6 Performance reporting
        • 10.3.7 Summary of guideline values for microbial, chemical and physical characteristics
        • 10.3.8 Summary of reference levels and screening values for radiological characteristics
      • 10.4 Reference
  • Part 4: Information sheets
    • 1. Disinfection
      • 1.1: Introduction to water treatment
      • 1.2: Overview of disinfection
      • 1.3: Disinfection with chlorine
      • 1.4: Chloramines
      • 1.5: Disinfection with chlorine dioxide
      • 1.6: Disinfection with ozone
      • 1.7: Disinfection with ultraviolet light
      • 1.8: Other disinfectants
    • 2. Sampling
      • 2.1: Sampling Information – handling requirements and preservation
      • 2.2: Radiological monitoring and assessment of performance (updated 2022)
    • 3. Statistics
      • 3.1: Statistics – Visualising data
      • 3.2: Statistics – Assessing data
      • 3.3: Statistics – Statistical principles
      • 3.4: Statistics – Control charts and trends
      • 3.5: Number of samples required
      • 3.6: Guidance for issuing and lifting boil water advisories
      • Attachments
  • Part 5: Fact sheets
    • Microorganisms
      • Microbial indicators
        • Bacteroides
        • Coliphages
        • Clostridium perfringens
        • Escherichia coli
        • Heterotrophic plate counts
        • Intestinal enterococci
        • Thermotolerant coliforms
        • Total coliforms
      • Bacteria
        • Aeromonas
        • Burkholderia pseudomallei
        • Campylobacter
        • Escherichia coli (E. coli) (pathogenic)
        • Helicobacter pylori
        • Klebsiella
        • Legionella
        • Mycobacterium
        • Pseudomonas aeruginosa
        • Salmonella
        • Shigella
        • Vibrio
        • Yersinia
      • Protozoa
        • Acanthamoeba
        • Blastocystis
        • Cryptosporidium
        • Cyclospora
        • Giardia
        • Naegleria fowleri
      • Cyanobacteria and their toxins
        • Cyanobacteria and their toxins
        • Cylindrospermopsin
        • Microcystins
        • Nodularin
        • Saxitoxins
      • Viruses
        • Adenovirus
        • Enterovirus
        • Hepatitis viruses
        • Norovirus
        • Rotavirus
    • Physical and chemical characteristics
      • Acephate
      • Acrylamide
      • Aldicarb
      • Aldrin and Dieldrin
      • Aluminium
      • Ametryn
      • Amitraz
      • Amitrole
      • Ammonia
      • Antimony
      • Arsenic
      • Asbestos
      • Asulam
      • Atrazine
      • Azinphos-methyl
      • Barium
      • Benomyl
      • Bentazone
      • Benzene
      • Beryllium
      • Bioresmethrin
      • Boron
      • Bromacil
      • Bromate
      • Bromoxynil
      • Cadmium
      • Captan
      • Carbaryl
      • Carbendazim/Thiophanate-methyl
      • Carbofuran
      • Carbon tetrachloride
      • Carboxin
      • Carfentrazone-ethyl
      • Chloral hydrate (Trichloroacetaldehyde)
      • Chlorantraniliprole
      • Chlordane
      • Chlorfenvinphos
      • Chloride
      • Chlorinated furanones
      • Chlorine
      • Chlorine dioxide, Chlorite, Chlorate
      • Chloroacetic acids: chloroacetic acid, dichloroacetic acid (DCA), trichloroacetic acid (TCA)
      • Chlorobenzene
      • Chloroketones
      • Chlorophenols
      • Chloropicrin
      • Chlorothalonil
      • Chlorpyrifos
      • Chlorsulfuron
      • Chromium
      • Clopyralid
      • Colour (True)
      • Copper
      • Cyanide
      • Cyanogen chloride
      • Cyfluthrin, Beta-cyfluthrin
      • Cypermethrin isomers
      • Cyprodinil
      • 2,4-D [(2,4-Dichlorophenoxy) acetic acid]
      • DDT (1,1,1-trichloro-di-(4-chlorophenyl) ethane)
      • Deltamethrin
      • Diazinon
      • Dicamba
      • Dichlorobenzenes
      • Dichloroethanes: 1,1-dichloroethane, 1,2-dichloroethane
      • Dichloroethenes: 1,1-dichloroethene (1,1-DCE), 1,2-dichloroethene (1,2-DCE)
      • Dichloromethane (methylene chloride)
      • 1,3-Dichloropropene
      • Dichlorprop/Dichlorprop-P
      • Dichlorvos
      • Diclofop-methyl
      • Dicofol
      • Diflubenzuron
      • Dimethoate
      • Diquat (ion), Diquat dibromide
      • Dissolved oxygen
      • Disulfoton
      • Diuron
      • 2,2-DPA
      • Endosulfan
      • Endothal
      • Epichlorohydrin
      • EPTC
      • Esfenvalerate
      • Ethion
      • Ethoprophos
      • Ethylbenzene
      • Ethylenediamine tetraacetic acid (EDTA)
      • Etridiazole
      • Fenamiphos
      • Fenarimol
      • Fenchlorphos
      • Fenitrothion
      • Fenthion
      • Fenvalerate
      • Fipronil
      • Flamprop-methyl
      • Fluometuron
      • Fluoride
      • Flupropanate
      • Formaldehyde
      • Glyphosate
      • Haloacetonitriles
      • Haloxyfop
      • Hardness (as calcium carbonate)
      • Heptachlor and heptachlor epoxide
      • Hexachlorobutadiene
      • Hexazinone
      • Hydrogen sulfide, Sulfide
      • Imazapyr
      • Iodine, Iodide
      • Iprodione
      • Iron
      • Lanthanum
      • Lead
      • Lindane
      • Maldison (Malathion)
      • Mancozeb
      • Manganese
      • MCPA
      • Mercury
      • Metaldehyde
      • Metham
      • Methidathion
      • Methiocarb
      • Methomyl
      • Methyl bromide
      • Metiram
      • Metolachlor/s-Metolachlor
      • Metribuzin
      • Metsulfuron-methyl
      • Mevinphos
      • Molinate
      • Molybdenum
      • Monochloramine
      • Naphthalophos
      • Napropamide
      • Nicarbazin
      • Nickel
      • Nitrate and nitrite
      • Nitrilotriacetic acid (NTA)
      • N-Nitrosodimethylamine (NDMA)
      • Norflurazon
      • Omethoate
      • Organotins: dialkyltins, tributyltin oxide
      • Oryzalin
      • Oxamyl
      • Paraquat
      • Parathion
      • Parathion-methyl
      • Pebulate
      • Pendimethalin
      • Pentachlorophenol
      • Per-fluoroalkyl and poly-fluoroalkyl substances (PFAS)
      • Permethrin
      • pH
      • Picloram
      • Piperonyl butoxide
      • Pirimicarb
      • Pirimiphos methyl
      • Plasticisers
      • Polihexanide
      • Polycyclic aromatic hydrocarbons (PAHs)
      • Profenofos
      • Promecarb
      • Propachlor
      • Propanil
      • Propargite
      • Propazine
      • Propiconazole
      • Propyzamide
      • Pyrasulfotole
      • Pyrazophos
      • Pyroxsulam
      • Quintozene
      • Radionuclides, Specific Alpha and Beta Emitting
      • Radium (radium-226 and radium-228)
      • Radon-222
      • Selenium
      • Silica
      • Silver
      • Simazine
      • Sodium
      • Spirotetramat
      • Styrene (vinylbenzene)
      • Sulfate
      • Sulprofos
      • Taste and Odour
      • Temephos
      • Temperature
      • Terbacil
      • Terbufos
      • Terbuthylazine
      • Terbutryn
      • Tetrachloroethene
      • Thiobencarb
      • Thiometon
      • Thiram
      • Tin
      • Toltrazuril
      • Toluene
      • Total dissolved solids
      • Triadimefon
      • Trichlorfon
      • Trichlorobenzenes
      • 1,1,1-Trichloroethane
      • Trichloroethylene (TCE)
      • Triclopyr
      • Trifluralin
      • Trihalomethanes (THMs)
      • Turbidity
      • Uranium
      • Vernolate
      • Vinyl chloride
      • Xylenes
      • Zinc
    • Drinking water treatment chemicals
      • Aluminium chlorohydrate
      • Aluminium sulfate (alum)
      • Ammonia
      • Ammonium sulfate
      • Calcium hydroxide
      • Calcium hypochlorite
      • Calcium oxide
      • Carbon, granulated activated
      • Carbon, powdered activated
      • Chlorine
      • Copper sulfate
      • Ferric chloride
      • Ferric sulfate
      • Hydrochloric acid
      • Hydrofluorosilicic acid
      • Hydrogen peroxide
      • Hydroxylated ferric sulfate
      • Ozone
      • Polyacrylamide
      • Polyaluminium chloride
      • Polyaluminium silica sulfates
      • Polydiallyldimethylammonium chloride
      • Potassium permanganate
      • Sodium aluminate
      • Sodium bicarbonate
      • Sodium carbonate
      • Sodium fluoride
      • Sodium fluorosilicate
      • Sodium hexametaphosphate
      • Sodium hydroxide
      • Sodium hypochlorite
      • Sodium silicate
      • Sodium tripolyphosphate
      • Sulfuric acid
      • Zinc orthophosphate
  • Appendices
    • Appendix 1: Additional guidance
      • A1.1 Introduction
      • A1.2 Water supply system analysis
      • A1.3 Assessment of water quality data
      • A1.4 Hazard identification
      • A1.5 Risk assessment
      • A1.6 Preventive measures and multiple barriers
      • A1.7 Critical control points
      • A1.8 Chlorination as an example of a critical control point
      • A1.9 References
    • Appendix 2: Further sources of information on drinking water quality management
      • A2.1 Drinking water quality management - general
      • A2.2 Catchment management and source water protection
      • A2.3 Groundwater protection
      • A2.4 Risk assessment and management
      • A2.5 System analysis and management process control and optimisation
      • A2.6 Monitoring and verification
      • A2.7 Materials and chemicals
      • A2.8 Incident and emergency management
      • A2.9 Employee training and awareness
      • A2.10 Research and development
      • A2.11 Documentation and reporting
      • A2.12 Community consultation and communication
      • A2.13 Hazard analysis and critical control point (HACCP)
      • A2.14 Quality management continuous improvement
      • A2.15 Reference web sites
    • Appendix 3: Derivation of microbial treatment targets for enteric pathogens
      • A3.1 Introduction to Quantitative Microbial Risk Assessment (QMRA)
      • A3.2 Adopting the QMRA approach in the Guidelines
      • A3.3 QMRA framework for the calculation of log₁₀ reduction values (LRVs)
      • A3.4 Defining the health outcome target
      • A3.5 Selection of reference pathogens
      • A3.6 Level of reference pathogen contamination in Australian source waters
      • A3.7 Consumption volume of unheated (unboiled) water per person per day
      • A3.8 Dose response relationships
      • A3.9 Disability Adjusted Life Years (DALY) burden per case
      • A3.10 Calculation of LRVs using the QMRA framework
      • A3.11 Interpretation of calculated LRVs for practical treatment guidance
      • A3.12 Understanding log₁₀ reductions
      • A3.13 References
  • Glossary
Powered by GitBook
LogoLogo

Australian Drinking Water Guidelines 6 2011, v3.9

  • Go back to NHMRC website
On this page
  • General description
  • Chemistry
  • Typical use in Australian drinking water treatment
  • Contaminants
  • Residual and by-product formation in drinking water
  • Status
  • References
  1. Part 5: Fact sheets
  2. Drinking water treatment chemicals

Sodium silicate

(endorsed 2005)

Sodium silicate, in the form of ‘activated silica,’ is used as a coagulant or a flocculation aid in the treatment of drinking water, in conjunction with a primary coagulant (e.g. alum). Soluble silicates (waterglass) can also be used to inhibit corrosion or sequester metals, and sodium silicate solution can be used to adjust pH in small water systems.

General description

Sodium silicate, Na₂O·xSiO₂, can be in the form of lumps of greenish glass (soluble in steam), white powders of varying degrees of solubility, or as cloudy or clear solutions of varying viscosity.

Soluble silicates can be differentiated by their ratio of silica to sodium oxide (SiO₂:Na₂O). This ratio, which ranges from 1.6 to 3.3 by weight, determines the physical and chemical properties of the product. Liquid silicates with a ratio of 1.6 have a pH of 13.2; whereas, at a ratio of 3.3 the pH is 11.0. The specific gravity of these solutions ranges between 1.4 and 1.6. The colloidal and polymeric properties of liquid silicates increase as the SiO₂:Na₂O ratio increases.

Appropriate materials for handling sodium silicate include cast iron, steel, fibreglass-reinforced plastic and polyethylene, and rubber linings.

Chemistry

Sodium silicate is produced by fusing high purity silica sand with sodium carbonate or potassium carbonate at 1000–1500°C. This results in an amorphous glass, which can be dissolved in water to form silicate solutions or ‘waterglass’.

In solution, silica is present in equilibrium between monomeric anionic species. The proportion of silica and alkali in a sodium silicate is usually expressed as the weight ratio of SiO₂ to Na₂O.

In drinking water treatment, solutions of activated or colloidal silica can be used for coagulation. Such solutions can be generated on site by partial or complete neutralisation of a dilute solution of sodium silicate by a mineral acid, an acid salt or chlorine. The activated silica solution obtained can be slightly alkaline or neutral, and is aged for a short time (1–2 hours) before use. The solution is then further diluted with 2–2.5 volumes of water. The activated silica solution has a shelf life of 1–2 days.

Typical use in Australian drinking water treatment

At one time, activated silica was commonly used as a coagulant aid (after a primary coagulant such as alum or ferric chloride), because it forms heavy, tough flocs that settle fast. However, polyacrylamide polymers have now largely replaced activated silica in most water treatment plants.

Soluble silicates are also used to protect metals from the corrosive effects of water by depositing a thin molecular film of silica (SiO₂) on metal surfaces. Silicate treatment is effective for corrosion control of concrete and a variety of metals: lead, copper, cast iron, ferrous metals, steel, galvanised steel, bronze, red and yellow brass, and nickel alloys. The pH and alkalinity of the water determine which silicate is suitable for this application.

Sodium silicate can also be used to sequester iron and manganese. Following metal oxidation, sodium silicate is added to hold oxidised metals in a colloidal suspension.

Concentrations of activated silica used in drinking water treatment can range from 1 to 10 mg/L (as SiO₂), and the concentration required varies with water quality, depending on factors such as pH, turbidity, colour, temperature and contaminant level.

The effectiveness of sodium silicate as a corrosion inhibitor depends on water quantities such as pH and bicarbonate concentration. The chemical is more effective under high-velocity flow conditions. Silicate is effective at high pH, and at a dosage over 15–20 mg/L (as SiO₂).

Silicate with a high ratio of Na₂O to SiO₂ will raise pH in weakly buffered waters. For corrosion control, relatively high concentrations (up to 24 mg/L) are required during the first 30–60 days of treatment, to form the initial protective coating. Thereafter, the silicate dosage is reduced incrementally in 30-day periods, until it reaches maintenance doses (4–8 mg/L).

As a metal sequestrant, sodium silicate (as SiO₂) should be added at up to 4–5 times the level of iron or manganese in the water.

Contaminants

The purity of chemicals used in Australia for the treatment of drinking water varies, depending on the manufacturing process. More than 20 elements are present as trace impurities in sodium silicate, including:

  • aluminium

  • cadmium

  • calcium

  • chloride

  • iron

  • magnesium

  • manganese

  • sulfate

Residual and by-product formation in drinking water

Sodium and silicate residues are present in finished water. When employed in drinking water treatment, sodium silicate should be used in such a way that any contaminant or by-product formed by the use of the chemical does not exceed guideline values in the Australian Drinking Water Guidelines.

Status

Sodium silicate was endorsed by the NHMRC for use as a drinking water treatment chemical in 1983. The revision undertaken in 2003 did not change the status of this chemical for the treatment of drinking water.

References

Clesceri LS, Greenberg AE and Eaton AD (eds) (1998). Standard Methods for the Examination of Water and Wastewater, 20th edition. American Public Health Association, Washington, DC.

PreviousSodium hypochloriteNextSodium tripolyphosphate

Last updated 5 months ago

ANSI (American National Standards Institute)/AWWA (American Water and Wastewater Association) Standard no B404-98. AWWA CD-ROM (April 2003). Available at <>

www.awwa.org