🚰
Australian Drinking Water Guidelines
Go to NHMRC's website
  • Australian Drinking Water Guidelines
  • Copyright
  • Table of updates
  • Contents
  • Figures
  • Tables
  • Boxes
  • Introduction
    • Chapter 1: Introduction
      • 1.1 Guiding principles
      • 1.2 About the Guidelines
        • 1.2.1 Scope of the Guidelines
        • 1.2.2 Purpose of the Guidelines
        • 1.2.3 Structure of the Guidelines
      • 1.3 Water quality characteristics
        • 1.3.1 Introduction
        • 1.3.2 Health-based targets
        • 1.3.3 Microbial health-based targets
        • 1.3.4 Physical and chemical guideline values
        • 1.3.5 Radiological screening and reference values
      • 1.4 Community consultation
      • 1.5 Development of the Guidelines
        • 1.5.1 Acknowledgments
      • 1.6 Future revisions of the Guidelines
      • 1.7 References
  • Part 1: Management of Drinking Water Quality
    • Chapter 2: Framework for Management of Drinking Water Quality: overview
      • 2.1 A preventive strategy from catchment to consumer
      • 2.2 Structure of the Framework
      • 2.3 Benefits of the Framework
      • 2.4 The need for multi-agency involvement
      • 2.5 Applying the Framework
      • 2.6 Correlations of the Framework with other systems
    • Chapter 3: Framework for Management of Drinking Water Quality: the twelve elements
      • 3.1 Commitment to drinking water quality management (element 1)
        • 3.1.1 Drinking water quality policy
        • 3.1.2 Regulatory and formal requirements
        • 3.1.3 Engaging stakeholders
      • 3.2 Assessment of the drinking water supply system (element 2)
        • 3.2.1 Water supply system analysis
        • 3.2.2 Assessment of water quality data
        • 3.2.3 Hazard identification and risk assessment
      • 3.3 Preventive measures for drinking water quality management (element 3)
        • 3.3.1 Preventive measures and multiple barriers
        • 3.3.2 Critical control points
      • 3.4 Operational procedures and process control (element 4)
        • 3.4.1 Operational procedures
        • 3.4.2 Operational monitoring
        • 3.4.3 Corrective action
        • 3.4.4 Equipment capability and maintenance
        • 3.4.5 Materials and chemicals
      • 3.5 Verification of drinking water quality (element 5)
        • 3.5.1 Drinking water quality monitoring
        • 3.5.2 Consumer satisfaction
        • 3.5.3 Short-term evaluation of results
        • 3.5.4 Corrective action
      • 3.6 Management of incidents and emergencies (element 6)
        • 3.6.1 Communication
        • 3.6.2 Incident and emergency response protocols
      • 3.7 Employee awareness and training (element 7)
        • 3.7.1 Employee awareness and involvement
        • 3.7.2 Employee training
      • 3.8 Community involvement and awareness (element 8)
        • 3.8.1 Community consultation
        • 3.8.2 Communication
      • 3.9 Research and development (element 9)
        • 3.9.1 Investigative studies and research monitoring
        • 3.9.2 Validation of processes
        • 3.9.3 Design of equipment
      • 3.10 Documentation and reporting (element 10)
        • 3.10.1 Management of documentation and records
        • 3.10.2 Reporting
      • 3.11 Evaluation and audit (element 11)
        • 3.11.1 Long-term evaluation of results
        • 3.11.2 Audit of drinking water quality management
      • 3.12 Review and continual improvement (element 12)
        • 3.12.1 Review by senior executive
        • 3.12.2 Drinking water quality management improvement plan
      • 3.13 References
    • Chapter 4: Framework for the Management of Drinking Water Quality: application to small water supplies
      • 4.1 Introduction
      • 4.2 Applying the Framework
        • 4.2.1 Assessment of the drinking water supply
        • 4.2.2 Preventive measures for drinking water quality management
        • 4.2.3 Implementation of operational procedures and process control
        • 4.2.4 Verification of drinking water quality
      • 4.3 Individual household supplies
      • 4.4 Reference
  • Part 2: Description of Water Quality
    • Chapter 5: Microbial Quality of Drinking Water (Updated 2022)
      • 5.1 Introduction
      • 5.2 Microorganisms in drinking water
      • 5.3 Assessing microbial risk
      • 5.4 Enteric pathogens
        • 5.4.1 Enteric pathogens of concern in drinking water
        • 5.4.2 Contamination of source waters with enteric pathogens
        • 5.4.3 Management of risk from enteric pathogens
      • 5.5 Opportunistic pathogens
      • 5.6 Cyanobacteria
      • 5.7 Nuisance organisms
        • 5.7.1 Organisms causing taste and odour problems
        • 5.7.2 Organisms causing colour problems
        • 5.7.3 Deposits due to iron and manganese bacteria
        • 5.7.4 Corrosion problems due to iron and sulphur bacteria
        • 5.7.5 Problems caused by large numbers of microorganisms
      • 5.8 References
    • Chapter 6: Physical and Chemical Quality of Drinking Water
      • 6.1 Introduction
      • 6.2 Physical quality of drinking water
        • 6.2.1 An overview of physical characteristics
        • 6.2.2 Approach used in derivation of guidelines values for physical characteristics
      • 6.3 Chemical quality of drinking water
        • 6.3.1 Inorganic chemicals
        • 6.3.2 Organic compounds (Revised 2011)
        • 6.3.3 Approach used in derivation of guideline values for chemicals
      • 6.4 Differences between Australian and WHO guideline values
      • 6.5 National and international guideline values (2016)
      • 6.6 References
    • Chapter 7: Radiological Quality of Drinking Water (Updated 2022)
      • 7.1 Introduction
      • 7.2 Sources of radiation in the environment and in drinking water
      • 7.3 Health effects of radiation
      • 7.4 Exposure to radiation
      • 7.5 Units of radioactivity and radiation dose measurement
        • 7.5.1 Units of radioactivity and radiation dose
        • 7.5.2 Converting intake to radiation dose
        • 7.5.3 Average dose of radiation
      • 7.6 Approach for derivation of reference levels and screening values for radionuclides
        • 7.6.1 System for radiation protection
        • 7.6.2 Estimation of the dose from radionuclides in water
        • 7.6.3 Estimation of risk from low-level radiation
        • 7.6.4 Reference levels and screening values for drinking water
        • 7.6.5 Application of reference levels
        • 7.6.6 Remedial measures
      • 7.7 References
    • Chapter 8: Drinking Water Treatment Chemicals (Revised 2006)
      • 8.1 Introduction
      • 8.2 Scope and limit of application of this chapter
      • 8.3 Overview of chemical treatment processes
        • 8.3.1 Control of algae
        • 8.3.2 Coagulation and flocculation
        • 8.3.3 Adsorption
        • 8.3.4 Softening
        • 8.3.5 Oxidation
        • 8.3.6 Disinfection
        • 8.3.7 Adjustment of pH
        • 8.3.8 Addition of buffering capacity
        • 8.3.9 Corrosion inhibition
      • 8.4 Public health measures
        • 8.4.1 Fluoridation
      • 8.5 Assessment of Chemicals acceptable for use in drinking water treatment (revised 2016)
        • 8.5.1 Chemicals assessed prior to 2004
        • 8.5.2 New water treatment chemicals
      • 8.6 Quality assurance for drinking water treatment chemicals
        • 8.6.1 Risks associated with drinking water chemicals
        • 8.6.2 Managing risks
        • 8.6.3 Specifications for the supply of drinking water treatment chemicals
      • 8.7 Monitoring and analytical requirements
      • 8.8 Contaminants in drinking water treatment chemicals
      • 8.9 Useful contacts
      • 8.10 References
  • Part 3: Monitoring
    • Chapter 9: Overview of monitoring (Revised 2021)
      • 9.1 Introduction
      • 9.2 Monitoring overview
        • 9.2.1 Monitoring priorities
        • 9.2.2 Principles of monitoring frequency
        • 9.2.3 Catchment-to-consumer monitoring
      • 9.3 Developing a monitoring program
      • 9.4 Operational monitoring
        • 9.4.1 Operational characteristics
        • 9.4.2 Target criteria
        • 9.4.3 Critical limits at critical control points
        • 9.4.4 Corrective action
        • 9.4.5 Operational monitoring frequency
        • 9.4.6 Chlorination as a critical control point: an example
      • 9.5 Verification of drinking water quality
        • 9.5.1 Monitoring consumer satisfaction
        • 9.5.2 Drinking water quality monitoring
      • 9.6 Water quality issues beyond the point of supply
      • 9.7 Investigative studies and research monitoring
      • 9.8 Validation of barrier performance
      • 9.9 Incident and emergency response monitoring
      • 9.10 Reliability of monitoring data
        • 9.10.1 Sample integrity
        • 9.10.2 Methods
        • 9.10.3 Detection limits
        • 9.10.4 Measurement uncertainty
        • 9.10.5 Field testing
      • 9.11 Monitoring advice for small, remote or community-managed water supplies
      • 9.12 Assessing the significance of short-term exceedances of health-based guideline values
      • 9.13 References
    • Chapter 10: Monitoring for specific characteristics in drinking water (Updated 2022)
      • 10.1 Introduction
      • 10.2 Assessing safety: short-term evaluation of monitoring
        • 10.2.1 Short-term evaluation of operational monitoring
        • 10.2.2 Short-term evaluation of drinking water quality monitoring
      • 10.3 Assessing performance: long-term evaluation of monitoring
        • 10.3.1 Long-term evaluation of microbial performance
        • 10.3.2 Long-term evaluation of health-based chemical performance
        • 10.3.3 Long-term evaluation of aesthetic performance
        • 10.3.4 Long-term evaluation of consumer satisfaction
        • 10.3.5 Improvement plan
        • 10.3.6 Performance reporting
        • 10.3.7 Summary of guideline values for microbial, chemical and physical characteristics
        • 10.3.8 Summary of reference levels and screening values for radiological characteristics
      • 10.4 Reference
  • Part 4: Information sheets
    • 1. Disinfection
      • 1.1: Introduction to water treatment
      • 1.2: Overview of disinfection
      • 1.3: Disinfection with chlorine
      • 1.4: Chloramines
      • 1.5: Disinfection with chlorine dioxide
      • 1.6: Disinfection with ozone
      • 1.7: Disinfection with ultraviolet light
      • 1.8: Other disinfectants
    • 2. Sampling
      • 2.1: Sampling Information – handling requirements and preservation
      • 2.2: Radiological monitoring and assessment of performance (updated 2022)
    • 3. Statistics
      • 3.1: Statistics – Visualising data
      • 3.2: Statistics – Assessing data
      • 3.3: Statistics – Statistical principles
      • 3.4: Statistics – Control charts and trends
      • 3.5: Number of samples required
      • 3.6: Guidance for issuing and lifting boil water advisories
      • Attachments
  • Part 5: Fact sheets
    • Microorganisms
      • Microbial indicators
        • Bacteroides
        • Coliphages
        • Clostridium perfringens
        • Escherichia coli
        • Heterotrophic plate counts
        • Intestinal enterococci
        • Thermotolerant coliforms
        • Total coliforms
      • Bacteria
        • Aeromonas
        • Burkholderia pseudomallei
        • Campylobacter
        • Escherichia coli (E. coli) (pathogenic)
        • Helicobacter pylori
        • Klebsiella
        • Legionella
        • Mycobacterium
        • Pseudomonas aeruginosa
        • Salmonella
        • Shigella
        • Vibrio
        • Yersinia
      • Protozoa
        • Acanthamoeba
        • Blastocystis
        • Cryptosporidium
        • Cyclospora
        • Giardia
        • Naegleria fowleri
      • Cyanobacteria and their toxins
        • Cyanobacteria and their toxins
        • Cylindrospermopsin
        • Microcystins
        • Nodularin
        • Saxitoxins
      • Viruses
        • Adenovirus
        • Enterovirus
        • Hepatitis viruses
        • Norovirus
        • Rotavirus
    • Physical and chemical characteristics
      • Acephate
      • Acrylamide
      • Aldicarb
      • Aldrin and Dieldrin
      • Aluminium
      • Ametryn
      • Amitraz
      • Amitrole
      • Ammonia
      • Antimony
      • Arsenic
      • Asbestos
      • Asulam
      • Atrazine
      • Azinphos-methyl
      • Barium
      • Benomyl
      • Bentazone
      • Benzene
      • Beryllium
      • Bioresmethrin
      • Boron
      • Bromacil
      • Bromate
      • Bromoxynil
      • Cadmium
      • Captan
      • Carbaryl
      • Carbendazim/Thiophanate-methyl
      • Carbofuran
      • Carbon tetrachloride
      • Carboxin
      • Carfentrazone-ethyl
      • Chloral hydrate (Trichloroacetaldehyde)
      • Chlorantraniliprole
      • Chlordane
      • Chlorfenvinphos
      • Chloride
      • Chlorinated furanones
      • Chlorine
      • Chlorine dioxide, Chlorite, Chlorate
      • Chloroacetic acids: chloroacetic acid, dichloroacetic acid (DCA), trichloroacetic acid (TCA)
      • Chlorobenzene
      • Chloroketones
      • Chlorophenols
      • Chloropicrin
      • Chlorothalonil
      • Chlorpyrifos
      • Chlorsulfuron
      • Chromium
      • Clopyralid
      • Colour (True)
      • Copper
      • Cyanide
      • Cyanogen chloride
      • Cyfluthrin, Beta-cyfluthrin
      • Cypermethrin isomers
      • Cyprodinil
      • 2,4-D [(2,4-Dichlorophenoxy) acetic acid]
      • DDT (1,1,1-trichloro-di-(4-chlorophenyl) ethane)
      • Deltamethrin
      • Diazinon
      • Dicamba
      • Dichlorobenzenes
      • Dichloroethanes: 1,1-dichloroethane, 1,2-dichloroethane
      • Dichloroethenes: 1,1-dichloroethene (1,1-DCE), 1,2-dichloroethene (1,2-DCE)
      • Dichloromethane (methylene chloride)
      • 1,3-Dichloropropene
      • Dichlorprop/Dichlorprop-P
      • Dichlorvos
      • Diclofop-methyl
      • Dicofol
      • Diflubenzuron
      • Dimethoate
      • Diquat (ion), Diquat dibromide
      • Dissolved oxygen
      • Disulfoton
      • Diuron
      • 2,2-DPA
      • Endosulfan
      • Endothal
      • Epichlorohydrin
      • EPTC
      • Esfenvalerate
      • Ethion
      • Ethoprophos
      • Ethylbenzene
      • Ethylenediamine tetraacetic acid (EDTA)
      • Etridiazole
      • Fenamiphos
      • Fenarimol
      • Fenchlorphos
      • Fenitrothion
      • Fenthion
      • Fenvalerate
      • Fipronil
      • Flamprop-methyl
      • Fluometuron
      • Fluoride
      • Flupropanate
      • Formaldehyde
      • Glyphosate
      • Haloacetonitriles
      • Haloxyfop
      • Hardness (as calcium carbonate)
      • Heptachlor and heptachlor epoxide
      • Hexachlorobutadiene
      • Hexazinone
      • Hydrogen sulfide, Sulfide
      • Imazapyr
      • Iodine, Iodide
      • Iprodione
      • Iron
      • Lanthanum
      • Lead
      • Lindane
      • Maldison (Malathion)
      • Mancozeb
      • Manganese
      • MCPA
      • Mercury
      • Metaldehyde
      • Metham
      • Methidathion
      • Methiocarb
      • Methomyl
      • Methyl bromide
      • Metiram
      • Metolachlor/s-Metolachlor
      • Metribuzin
      • Metsulfuron-methyl
      • Mevinphos
      • Molinate
      • Molybdenum
      • Monochloramine
      • Naphthalophos
      • Napropamide
      • Nicarbazin
      • Nickel
      • Nitrate and nitrite
      • Nitrilotriacetic acid (NTA)
      • N-Nitrosodimethylamine (NDMA)
      • Norflurazon
      • Omethoate
      • Organotins: dialkyltins, tributyltin oxide
      • Oryzalin
      • Oxamyl
      • Paraquat
      • Parathion
      • Parathion-methyl
      • Pebulate
      • Pendimethalin
      • Pentachlorophenol
      • Per-fluoroalkyl and poly-fluoroalkyl substances (PFAS)
      • Permethrin
      • pH
      • Picloram
      • Piperonyl butoxide
      • Pirimicarb
      • Pirimiphos methyl
      • Plasticisers
      • Polihexanide
      • Polycyclic aromatic hydrocarbons (PAHs)
      • Profenofos
      • Promecarb
      • Propachlor
      • Propanil
      • Propargite
      • Propazine
      • Propiconazole
      • Propyzamide
      • Pyrasulfotole
      • Pyrazophos
      • Pyroxsulam
      • Quintozene
      • Radionuclides, Specific Alpha and Beta Emitting
      • Radium (radium-226 and radium-228)
      • Radon-222
      • Selenium
      • Silica
      • Silver
      • Simazine
      • Sodium
      • Spirotetramat
      • Styrene (vinylbenzene)
      • Sulfate
      • Sulprofos
      • Taste and Odour
      • Temephos
      • Temperature
      • Terbacil
      • Terbufos
      • Terbuthylazine
      • Terbutryn
      • Tetrachloroethene
      • Thiobencarb
      • Thiometon
      • Thiram
      • Tin
      • Toltrazuril
      • Toluene
      • Total dissolved solids
      • Triadimefon
      • Trichlorfon
      • Trichlorobenzenes
      • 1,1,1-Trichloroethane
      • Trichloroethylene (TCE)
      • Triclopyr
      • Trifluralin
      • Trihalomethanes (THMs)
      • Turbidity
      • Uranium
      • Vernolate
      • Vinyl chloride
      • Xylenes
      • Zinc
    • Drinking water treatment chemicals
      • Aluminium chlorohydrate
      • Aluminium sulfate (alum)
      • Ammonia
      • Ammonium sulfate
      • Calcium hydroxide
      • Calcium hypochlorite
      • Calcium oxide
      • Carbon, granulated activated
      • Carbon, powdered activated
      • Chlorine
      • Copper sulfate
      • Ferric chloride
      • Ferric sulfate
      • Hydrochloric acid
      • Hydrofluorosilicic acid
      • Hydrogen peroxide
      • Hydroxylated ferric sulfate
      • Ozone
      • Polyacrylamide
      • Polyaluminium chloride
      • Polyaluminium silica sulfates
      • Polydiallyldimethylammonium chloride
      • Potassium permanganate
      • Sodium aluminate
      • Sodium bicarbonate
      • Sodium carbonate
      • Sodium fluoride
      • Sodium fluorosilicate
      • Sodium hexametaphosphate
      • Sodium hydroxide
      • Sodium hypochlorite
      • Sodium silicate
      • Sodium tripolyphosphate
      • Sulfuric acid
      • Zinc orthophosphate
  • Appendices
    • Appendix 1: Additional guidance
      • A1.1 Introduction
      • A1.2 Water supply system analysis
      • A1.3 Assessment of water quality data
      • A1.4 Hazard identification
      • A1.5 Risk assessment
      • A1.6 Preventive measures and multiple barriers
      • A1.7 Critical control points
      • A1.8 Chlorination as an example of a critical control point
      • A1.9 References
    • Appendix 2: Further sources of information on drinking water quality management
      • A2.1 Drinking water quality management - general
      • A2.2 Catchment management and source water protection
      • A2.3 Groundwater protection
      • A2.4 Risk assessment and management
      • A2.5 System analysis and management process control and optimisation
      • A2.6 Monitoring and verification
      • A2.7 Materials and chemicals
      • A2.8 Incident and emergency management
      • A2.9 Employee training and awareness
      • A2.10 Research and development
      • A2.11 Documentation and reporting
      • A2.12 Community consultation and communication
      • A2.13 Hazard analysis and critical control point (HACCP)
      • A2.14 Quality management continuous improvement
      • A2.15 Reference web sites
    • Appendix 3: Derivation of microbial treatment targets for enteric pathogens
      • A3.1 Introduction to Quantitative Microbial Risk Assessment (QMRA)
      • A3.2 Adopting the QMRA approach in the Guidelines
      • A3.3 QMRA framework for the calculation of log₁₀ reduction values (LRVs)
      • A3.4 Defining the health outcome target
      • A3.5 Selection of reference pathogens
      • A3.6 Level of reference pathogen contamination in Australian source waters
      • A3.7 Consumption volume of unheated (unboiled) water per person per day
      • A3.8 Dose response relationships
      • A3.9 Disability Adjusted Life Years (DALY) burden per case
      • A3.10 Calculation of LRVs using the QMRA framework
      • A3.11 Interpretation of calculated LRVs for practical treatment guidance
      • A3.12 Understanding log₁₀ reductions
      • A3.13 References
  • Glossary
Powered by GitBook
LogoLogo

Australian Drinking Water Guidelines 6 2011, v3.9

  • Go back to NHMRC website
On this page
  • Guideline
  • Related chemicals
  • Human risk statement
  • General description
  • Typical values in Australian drinking water
  • Treatment of drinking water
  • Measurement
  • History of the health values
  • Health considerations
  • Derivation of health-based guideline
  • References
  1. Part 5: Fact sheets
  2. Physical and chemical characteristics

Deltamethrin

(endorsed 2011)

Guideline

Based on human health concerns, deltamethrin in drinking water should not exceed 0.04 mg/L.

Related chemicals

Deltamethrin (CAS 52918-63-5) is in the pyrethroid class of chemicals. Other pesticides in this class include cyfluthrin, cypermethrin, alpha-cypermethrin and permethrin (Tomlin 2006).

Human risk statement

With good water quality management practices, the exposure of the general population is expected to be well below levels that may cause health concerns.

If present in drinking water as a result of a spillage or through misuse, deltamethrin would not be a health concern unless the concentration exceeded 0.04 mg/L. Minor excursions above this level would need to occur over a significant period to be a health concern, as the health-based guideline is based on long-term effects.

With good water quality management practices, pesticides should not be detected in source waters used for drinking water supplies. Persistent detection of pesticides may indicate inappropriate use or accidental spillage, and investigation is required in line with established procedures in the risk management plan for the particular water source.

General description

Uses: Deltamethrin is an insecticide and parasiticide used for the control of a range of insects in various situations.

There are 70 products containing deltamethrin. They are intended for both professional and home garden use. For professional use, deltamethrin may be applied either as a pour-on, or as a spray, using ground or aerial methods of application. For home garden use, deltamethrin is generally available as pre-prepared spray or aerosol.

Exposure sources: The main source of public exposure to deltamethrin is residues in food. Residues levels in food produced according to good agricultural practice are generally low.

Agricultural use of deltamethrin may potentially lead to the contamination of source waters through processes such as run-off, spray drift or entry into groundwater.

Typical values in Australian drinking water

No data are available on the concentrations of deltamethrin in Australian drinking waters or in drinking water overseas.

Treatment of drinking water

There are no reports of the treatment of deltamethrin in drinking water.

Measurement

Several methods have been reported for the analysis of deltamethrin in water including liquid chromatography with electrospray ionisation mass spectrometry, with a limit of detection (LOD) of 0.2 ng/L in groundwater and 0.3 ng/L in sea water (Gil-Garcia et al. 2006); gas chromatography with micro-electron capture detection, LOD 0.81 ng/L (Casas et al. 2006); and gas chromatography-high resolution mass spectrometry, LOD 0.74 ng/L (Woudneh and Oras 2006).

History of the health values

The current acceptable daily intake (ADI) for deltamethrin is 0.01 mg per kg of bodyweight (mg/kg bw), based on a no-observed-effect level (NOEL) of 1 mg/kg bw/day from a long-term dog study. This NOEL is based on clinical effects, including dilation of the pupils, decreased weight gain, vomiting and diarrhoea. The ADI incorporates a safety factor of 100 and was established in 1980.

A health value has not previously been established by NHMRC.

Health considerations

Metabolism: Deltamethrin is rapidly absorbed via the gastrointestinal tract. It is extensively metabolised and excreted. The principal routes of metabolism are ester cleavage and oxidation at the 4-position of the alcohol moiety.

Acute effects: Deltamethrin has moderate to high acute oral toxicity and low acute dermal toxicity. It is not a skin sensitiser. Production and agricultural workers have reported irritation to the skin and mucous membranes, which last for several days.

Short-term effects: Medium-term dietary exposure in rats and dogs resulted in decreased bodyweight gain at the highest doses tested, namely, 2.5 mg/kg bw/day and 1 mg/kg bw/day, respectively. This was not accompanied by any pathological changes.

Long-term effects: Long-term dietary studies in mice, rat and dogs reported no significant toxic effects at dose levels of 15, 2.1 and 1.0 mg/kg bw/day, respectively.

Carcinogenicity: Based on long-term studies in mice and rats, there is no evidence of carcinogenicity for deltamethrin.

Genotoxicity: Deltamethrin is not considered to be genotoxic, based on in vitro and in vivo short-term studies.

Reproductive and developmental effects: In a multigenerational reproduction study in rats and in developmental studies in mice, rats and rabbits, there was no evidence of effects on reproductive parameters or on foetal development.

Poisons Schedule: Deltamethrin is included in Schedule 5, 6 or 7 of the Standard for the Uniform Scheduling of Medicines and Poisons No.1, 2010 (the Poisons Standard)(DoHA 2010), depending on the concentration and use. Current versions of the Poisons Standard should be consulted for further information.

Derivation of health-based guideline

The health-based guideline of 0.04 mg/L for deltamethrin was determined as follows:

where:

  • 1.0 mg/kg bw/day is the NOEL based on a long-term (2-year) toxicity dietary study in dogs.

  • 70 kg is taken as the average weight of an adult.

  • 0.1 is a proportionality factor based on the assumption that 10% of the ADI will arise from the consumption of drinking water.

  • 2 L/day is the estimated maximum amount of water consumed by an adult.

  • 100 is the safety factor applied to the NOEL derived from animal studies. This safety factor incorporates a factor of 10 for interspecies extrapolation and 10 for intraspecies variation.

Deltamethrin is excluded from the World Health Organization drinking water guidelines because it is “unlikely to occur in drinking water” (WHO 2006).

References

NOTE: The toxicological information used in developing this fact sheet is from reports and data held by the Department of Health, Office of Chemical Safety.

Casas V, Llompart M, Garcia-Jares C, Cela R, Dagnac T (2006). Multivariate optimisation of the factors influencing the solid-phase microextraction of pyrethroid pesticides in water. Journal of Chromatography A, 1124:148-156.

DoHA (2010) The Poisons Standard; Schedule 1-Standard for the Uniform Scheduling of Medicines and Poisons, Department of Health and Ageing, Commonwealth of Australia, Canberra.

Gil-Garcia MD, Barranco-Martinez D, Martinez-Galera M, Parrilla-Vazquez P (2006). Simple, rapid solid-phase extraction procedure for the determination of ultra-trace levels of pyrethroids in ground and sea water by liquid chromatography/electrospray ionisation mass spectrometry. Rapid Communications in Mass Spectrometry, 20:2395-2403.

Tomlin CD (ed) (2006). The Pesticide Manual: a world compendium, 14th Edition, British Crop Production Council, UK.

WHO (World Health Organization) (2006). Guidelines for Drinking-water Quality. 3rd Edition, First Addendum, WHO, Geneva, Switzerland.

Woudneh MB, Oros DR (2006). Quantitative determination of pyrethroids, pyrethrins and piperonyl butoxide in surface water by high-resolution gas chromatography/high resolution mass spectrometry. Journal of Agricultural and Food Chemistry, 54(19):6957-6962.

PreviousDDT (1,1,1-trichloro-di-(4-chlorophenyl) ethane)NextDiazinon

Last updated 8 months ago

 0.04 mg/L = 1.0 mg/kg bodyweight/day x 70 kg x 0.1  2 L/day x 100 \text{ 0.04 mg/L } = \dfrac{\text{ 1.0 mg/kg bodyweight/day x 70 kg x 0.1 }}{\text{ 2 L/day x 100 }} 0.04 mg/L = 2 L/day x 100  1.0 mg/kg bodyweight/day x 70 kg x 0.1 ​