🚰
Australian Drinking Water Guidelines
Go to NHMRC's website
  • Australian Drinking Water Guidelines
  • Copyright
  • Table of updates
  • Contents
  • Figures
  • Tables
  • Boxes
  • Introduction
    • Chapter 1: Introduction
      • 1.1 Guiding principles
      • 1.2 About the Guidelines
        • 1.2.1 Scope of the Guidelines
        • 1.2.2 Purpose of the Guidelines
        • 1.2.3 Structure of the Guidelines
      • 1.3 Water quality characteristics
        • 1.3.1 Introduction
        • 1.3.2 Health-based targets
        • 1.3.3 Microbial health-based targets
        • 1.3.4 Physical and chemical guideline values
        • 1.3.5 Radiological screening and reference values
      • 1.4 Community consultation
      • 1.5 Development of the Guidelines
        • 1.5.1 Acknowledgments
      • 1.6 Future revisions of the Guidelines
      • 1.7 References
  • Part 1: Management of Drinking Water Quality
    • Chapter 2: Framework for Management of Drinking Water Quality: overview
      • 2.1 A preventive strategy from catchment to consumer
      • 2.2 Structure of the Framework
      • 2.3 Benefits of the Framework
      • 2.4 The need for multi-agency involvement
      • 2.5 Applying the Framework
      • 2.6 Correlations of the Framework with other systems
    • Chapter 3: Framework for Management of Drinking Water Quality: the twelve elements
      • 3.1 Commitment to drinking water quality management (element 1)
        • 3.1.1 Drinking water quality policy
        • 3.1.2 Regulatory and formal requirements
        • 3.1.3 Engaging stakeholders
      • 3.2 Assessment of the drinking water supply system (element 2)
        • 3.2.1 Water supply system analysis
        • 3.2.2 Assessment of water quality data
        • 3.2.3 Hazard identification and risk assessment
      • 3.3 Preventive measures for drinking water quality management (element 3)
        • 3.3.1 Preventive measures and multiple barriers
        • 3.3.2 Critical control points
      • 3.4 Operational procedures and process control (element 4)
        • 3.4.1 Operational procedures
        • 3.4.2 Operational monitoring
        • 3.4.3 Corrective action
        • 3.4.4 Equipment capability and maintenance
        • 3.4.5 Materials and chemicals
      • 3.5 Verification of drinking water quality (element 5)
        • 3.5.1 Drinking water quality monitoring
        • 3.5.2 Consumer satisfaction
        • 3.5.3 Short-term evaluation of results
        • 3.5.4 Corrective action
      • 3.6 Management of incidents and emergencies (element 6)
        • 3.6.1 Communication
        • 3.6.2 Incident and emergency response protocols
      • 3.7 Employee awareness and training (element 7)
        • 3.7.1 Employee awareness and involvement
        • 3.7.2 Employee training
      • 3.8 Community involvement and awareness (element 8)
        • 3.8.1 Community consultation
        • 3.8.2 Communication
      • 3.9 Research and development (element 9)
        • 3.9.1 Investigative studies and research monitoring
        • 3.9.2 Validation of processes
        • 3.9.3 Design of equipment
      • 3.10 Documentation and reporting (element 10)
        • 3.10.1 Management of documentation and records
        • 3.10.2 Reporting
      • 3.11 Evaluation and audit (element 11)
        • 3.11.1 Long-term evaluation of results
        • 3.11.2 Audit of drinking water quality management
      • 3.12 Review and continual improvement (element 12)
        • 3.12.1 Review by senior executive
        • 3.12.2 Drinking water quality management improvement plan
      • 3.13 References
    • Chapter 4: Framework for the Management of Drinking Water Quality: application to small water supplies
      • 4.1 Introduction
      • 4.2 Applying the Framework
        • 4.2.1 Assessment of the drinking water supply
        • 4.2.2 Preventive measures for drinking water quality management
        • 4.2.3 Implementation of operational procedures and process control
        • 4.2.4 Verification of drinking water quality
      • 4.3 Individual household supplies
      • 4.4 Reference
  • Part 2: Description of Water Quality
    • Chapter 5: Microbial Quality of Drinking Water (Updated 2022)
      • 5.1 Introduction
      • 5.2 Microorganisms in drinking water
      • 5.3 Assessing microbial risk
      • 5.4 Enteric pathogens
        • 5.4.1 Enteric pathogens of concern in drinking water
        • 5.4.2 Contamination of source waters with enteric pathogens
        • 5.4.3 Management of risk from enteric pathogens
      • 5.5 Opportunistic pathogens
      • 5.6 Cyanobacteria
      • 5.7 Nuisance organisms
        • 5.7.1 Organisms causing taste and odour problems
        • 5.7.2 Organisms causing colour problems
        • 5.7.3 Deposits due to iron and manganese bacteria
        • 5.7.4 Corrosion problems due to iron and sulphur bacteria
        • 5.7.5 Problems caused by large numbers of microorganisms
      • 5.8 References
    • Chapter 6: Physical and Chemical Quality of Drinking Water
      • 6.1 Introduction
      • 6.2 Physical quality of drinking water
        • 6.2.1 An overview of physical characteristics
        • 6.2.2 Approach used in derivation of guidelines values for physical characteristics
      • 6.3 Chemical quality of drinking water
        • 6.3.1 Inorganic chemicals
        • 6.3.2 Organic compounds (Revised 2011)
        • 6.3.3 Approach used in derivation of guideline values for chemicals
      • 6.4 Differences between Australian and WHO guideline values
      • 6.5 National and international guideline values (2016)
      • 6.6 References
    • Chapter 7: Radiological Quality of Drinking Water (Updated 2022)
      • 7.1 Introduction
      • 7.2 Sources of radiation in the environment and in drinking water
      • 7.3 Health effects of radiation
      • 7.4 Exposure to radiation
      • 7.5 Units of radioactivity and radiation dose measurement
        • 7.5.1 Units of radioactivity and radiation dose
        • 7.5.2 Converting intake to radiation dose
        • 7.5.3 Average dose of radiation
      • 7.6 Approach for derivation of reference levels and screening values for radionuclides
        • 7.6.1 System for radiation protection
        • 7.6.2 Estimation of the dose from radionuclides in water
        • 7.6.3 Estimation of risk from low-level radiation
        • 7.6.4 Reference levels and screening values for drinking water
        • 7.6.5 Application of reference levels
        • 7.6.6 Remedial measures
      • 7.7 References
    • Chapter 8: Drinking Water Treatment Chemicals (Revised 2006)
      • 8.1 Introduction
      • 8.2 Scope and limit of application of this chapter
      • 8.3 Overview of chemical treatment processes
        • 8.3.1 Control of algae
        • 8.3.2 Coagulation and flocculation
        • 8.3.3 Adsorption
        • 8.3.4 Softening
        • 8.3.5 Oxidation
        • 8.3.6 Disinfection
        • 8.3.7 Adjustment of pH
        • 8.3.8 Addition of buffering capacity
        • 8.3.9 Corrosion inhibition
      • 8.4 Public health measures
        • 8.4.1 Fluoridation
      • 8.5 Assessment of Chemicals acceptable for use in drinking water treatment (revised 2016)
        • 8.5.1 Chemicals assessed prior to 2004
        • 8.5.2 New water treatment chemicals
      • 8.6 Quality assurance for drinking water treatment chemicals
        • 8.6.1 Risks associated with drinking water chemicals
        • 8.6.2 Managing risks
        • 8.6.3 Specifications for the supply of drinking water treatment chemicals
      • 8.7 Monitoring and analytical requirements
      • 8.8 Contaminants in drinking water treatment chemicals
      • 8.9 Useful contacts
      • 8.10 References
  • Part 3: Monitoring
    • Chapter 9: Overview of monitoring (Revised 2021)
      • 9.1 Introduction
      • 9.2 Monitoring overview
        • 9.2.1 Monitoring priorities
        • 9.2.2 Principles of monitoring frequency
        • 9.2.3 Catchment-to-consumer monitoring
      • 9.3 Developing a monitoring program
      • 9.4 Operational monitoring
        • 9.4.1 Operational characteristics
        • 9.4.2 Target criteria
        • 9.4.3 Critical limits at critical control points
        • 9.4.4 Corrective action
        • 9.4.5 Operational monitoring frequency
        • 9.4.6 Chlorination as a critical control point: an example
      • 9.5 Verification of drinking water quality
        • 9.5.1 Monitoring consumer satisfaction
        • 9.5.2 Drinking water quality monitoring
      • 9.6 Water quality issues beyond the point of supply
      • 9.7 Investigative studies and research monitoring
      • 9.8 Validation of barrier performance
      • 9.9 Incident and emergency response monitoring
      • 9.10 Reliability of monitoring data
        • 9.10.1 Sample integrity
        • 9.10.2 Methods
        • 9.10.3 Detection limits
        • 9.10.4 Measurement uncertainty
        • 9.10.5 Field testing
      • 9.11 Monitoring advice for small, remote or community-managed water supplies
      • 9.12 Assessing the significance of short-term exceedances of health-based guideline values
      • 9.13 References
    • Chapter 10: Monitoring for specific characteristics in drinking water (Updated 2022)
      • 10.1 Introduction
      • 10.2 Assessing safety: short-term evaluation of monitoring
        • 10.2.1 Short-term evaluation of operational monitoring
        • 10.2.2 Short-term evaluation of drinking water quality monitoring
      • 10.3 Assessing performance: long-term evaluation of monitoring
        • 10.3.1 Long-term evaluation of microbial performance
        • 10.3.2 Long-term evaluation of health-based chemical performance
        • 10.3.3 Long-term evaluation of aesthetic performance
        • 10.3.4 Long-term evaluation of consumer satisfaction
        • 10.3.5 Improvement plan
        • 10.3.6 Performance reporting
        • 10.3.7 Summary of guideline values for microbial, chemical and physical characteristics
        • 10.3.8 Summary of reference levels and screening values for radiological characteristics
      • 10.4 Reference
  • Part 4: Information sheets
    • 1. Disinfection
      • 1.1: Introduction to water treatment
      • 1.2: Overview of disinfection
      • 1.3: Disinfection with chlorine
      • 1.4: Chloramines
      • 1.5: Disinfection with chlorine dioxide
      • 1.6: Disinfection with ozone
      • 1.7: Disinfection with ultraviolet light
      • 1.8: Other disinfectants
    • 2. Sampling
      • 2.1: Sampling Information – handling requirements and preservation
      • 2.2: Radiological monitoring and assessment of performance (updated 2022)
    • 3. Statistics
      • 3.1: Statistics – Visualising data
      • 3.2: Statistics – Assessing data
      • 3.3: Statistics – Statistical principles
      • 3.4: Statistics – Control charts and trends
      • 3.5: Number of samples required
      • 3.6: Guidance for issuing and lifting boil water advisories
      • Attachments
  • Part 5: Fact sheets
    • Microorganisms
      • Microbial indicators
        • Bacteroides
        • Coliphages
        • Clostridium perfringens
        • Escherichia coli
        • Heterotrophic plate counts
        • Intestinal enterococci
        • Thermotolerant coliforms
        • Total coliforms
      • Bacteria
        • Aeromonas
        • Burkholderia pseudomallei
        • Campylobacter
        • Escherichia coli (E. coli) (pathogenic)
        • Helicobacter pylori
        • Klebsiella
        • Legionella
        • Mycobacterium
        • Pseudomonas aeruginosa
        • Salmonella
        • Shigella
        • Vibrio
        • Yersinia
      • Protozoa
        • Acanthamoeba
        • Blastocystis
        • Cryptosporidium
        • Cyclospora
        • Giardia
        • Naegleria fowleri
      • Cyanobacteria and their toxins
        • Cyanobacteria and their toxins
        • Cylindrospermopsin
        • Microcystins
        • Nodularin
        • Saxitoxins
      • Viruses
        • Adenovirus
        • Enterovirus
        • Hepatitis viruses
        • Norovirus
        • Rotavirus
    • Physical and chemical characteristics
      • Acephate
      • Acrylamide
      • Aldicarb
      • Aldrin and Dieldrin
      • Aluminium
      • Ametryn
      • Amitraz
      • Amitrole
      • Ammonia
      • Antimony
      • Arsenic
      • Asbestos
      • Asulam
      • Atrazine
      • Azinphos-methyl
      • Barium
      • Benomyl
      • Bentazone
      • Benzene
      • Beryllium
      • Bioresmethrin
      • Boron
      • Bromacil
      • Bromate
      • Bromoxynil
      • Cadmium
      • Captan
      • Carbaryl
      • Carbendazim/Thiophanate-methyl
      • Carbofuran
      • Carbon tetrachloride
      • Carboxin
      • Carfentrazone-ethyl
      • Chloral hydrate (Trichloroacetaldehyde)
      • Chlorantraniliprole
      • Chlordane
      • Chlorfenvinphos
      • Chloride
      • Chlorinated furanones
      • Chlorine
      • Chlorine dioxide, Chlorite, Chlorate
      • Chloroacetic acids: chloroacetic acid, dichloroacetic acid (DCA), trichloroacetic acid (TCA)
      • Chlorobenzene
      • Chloroketones
      • Chlorophenols
      • Chloropicrin
      • Chlorothalonil
      • Chlorpyrifos
      • Chlorsulfuron
      • Chromium
      • Clopyralid
      • Colour (True)
      • Copper
      • Cyanide
      • Cyanogen chloride
      • Cyfluthrin, Beta-cyfluthrin
      • Cypermethrin isomers
      • Cyprodinil
      • 2,4-D [(2,4-Dichlorophenoxy) acetic acid]
      • DDT (1,1,1-trichloro-di-(4-chlorophenyl) ethane)
      • Deltamethrin
      • Diazinon
      • Dicamba
      • Dichlorobenzenes
      • Dichloroethanes: 1,1-dichloroethane, 1,2-dichloroethane
      • Dichloroethenes: 1,1-dichloroethene (1,1-DCE), 1,2-dichloroethene (1,2-DCE)
      • Dichloromethane (methylene chloride)
      • 1,3-Dichloropropene
      • Dichlorprop/Dichlorprop-P
      • Dichlorvos
      • Diclofop-methyl
      • Dicofol
      • Diflubenzuron
      • Dimethoate
      • Diquat (ion), Diquat dibromide
      • Dissolved oxygen
      • Disulfoton
      • Diuron
      • 2,2-DPA
      • Endosulfan
      • Endothal
      • Epichlorohydrin
      • EPTC
      • Esfenvalerate
      • Ethion
      • Ethoprophos
      • Ethylbenzene
      • Ethylenediamine tetraacetic acid (EDTA)
      • Etridiazole
      • Fenamiphos
      • Fenarimol
      • Fenchlorphos
      • Fenitrothion
      • Fenthion
      • Fenvalerate
      • Fipronil
      • Flamprop-methyl
      • Fluometuron
      • Fluoride
      • Flupropanate
      • Formaldehyde
      • Glyphosate
      • Haloacetonitriles
      • Haloxyfop
      • Hardness (as calcium carbonate)
      • Heptachlor and heptachlor epoxide
      • Hexachlorobutadiene
      • Hexazinone
      • Hydrogen sulfide, Sulfide
      • Imazapyr
      • Iodine, Iodide
      • Iprodione
      • Iron
      • Lanthanum
      • Lead
      • Lindane
      • Maldison (Malathion)
      • Mancozeb
      • Manganese
      • MCPA
      • Mercury
      • Metaldehyde
      • Metham
      • Methidathion
      • Methiocarb
      • Methomyl
      • Methyl bromide
      • Metiram
      • Metolachlor/s-Metolachlor
      • Metribuzin
      • Metsulfuron-methyl
      • Mevinphos
      • Molinate
      • Molybdenum
      • Monochloramine
      • Naphthalophos
      • Napropamide
      • Nicarbazin
      • Nickel
      • Nitrate and nitrite
      • Nitrilotriacetic acid (NTA)
      • N-Nitrosodimethylamine (NDMA)
      • Norflurazon
      • Omethoate
      • Organotins: dialkyltins, tributyltin oxide
      • Oryzalin
      • Oxamyl
      • Paraquat
      • Parathion
      • Parathion-methyl
      • Pebulate
      • Pendimethalin
      • Pentachlorophenol
      • Per-fluoroalkyl and poly-fluoroalkyl substances (PFAS)
      • Permethrin
      • pH
      • Picloram
      • Piperonyl butoxide
      • Pirimicarb
      • Pirimiphos methyl
      • Plasticisers
      • Polihexanide
      • Polycyclic aromatic hydrocarbons (PAHs)
      • Profenofos
      • Promecarb
      • Propachlor
      • Propanil
      • Propargite
      • Propazine
      • Propiconazole
      • Propyzamide
      • Pyrasulfotole
      • Pyrazophos
      • Pyroxsulam
      • Quintozene
      • Radionuclides, Specific Alpha and Beta Emitting
      • Radium (radium-226 and radium-228)
      • Radon-222
      • Selenium
      • Silica
      • Silver
      • Simazine
      • Sodium
      • Spirotetramat
      • Styrene (vinylbenzene)
      • Sulfate
      • Sulprofos
      • Taste and Odour
      • Temephos
      • Temperature
      • Terbacil
      • Terbufos
      • Terbuthylazine
      • Terbutryn
      • Tetrachloroethene
      • Thiobencarb
      • Thiometon
      • Thiram
      • Tin
      • Toltrazuril
      • Toluene
      • Total dissolved solids
      • Triadimefon
      • Trichlorfon
      • Trichlorobenzenes
      • 1,1,1-Trichloroethane
      • Trichloroethylene (TCE)
      • Triclopyr
      • Trifluralin
      • Trihalomethanes (THMs)
      • Turbidity
      • Uranium
      • Vernolate
      • Vinyl chloride
      • Xylenes
      • Zinc
    • Drinking water treatment chemicals
      • Aluminium chlorohydrate
      • Aluminium sulfate (alum)
      • Ammonia
      • Ammonium sulfate
      • Calcium hydroxide
      • Calcium hypochlorite
      • Calcium oxide
      • Carbon, granulated activated
      • Carbon, powdered activated
      • Chlorine
      • Copper sulfate
      • Ferric chloride
      • Ferric sulfate
      • Hydrochloric acid
      • Hydrofluorosilicic acid
      • Hydrogen peroxide
      • Hydroxylated ferric sulfate
      • Ozone
      • Polyacrylamide
      • Polyaluminium chloride
      • Polyaluminium silica sulfates
      • Polydiallyldimethylammonium chloride
      • Potassium permanganate
      • Sodium aluminate
      • Sodium bicarbonate
      • Sodium carbonate
      • Sodium fluoride
      • Sodium fluorosilicate
      • Sodium hexametaphosphate
      • Sodium hydroxide
      • Sodium hypochlorite
      • Sodium silicate
      • Sodium tripolyphosphate
      • Sulfuric acid
      • Zinc orthophosphate
  • Appendices
    • Appendix 1: Additional guidance
      • A1.1 Introduction
      • A1.2 Water supply system analysis
      • A1.3 Assessment of water quality data
      • A1.4 Hazard identification
      • A1.5 Risk assessment
      • A1.6 Preventive measures and multiple barriers
      • A1.7 Critical control points
      • A1.8 Chlorination as an example of a critical control point
      • A1.9 References
    • Appendix 2: Further sources of information on drinking water quality management
      • A2.1 Drinking water quality management - general
      • A2.2 Catchment management and source water protection
      • A2.3 Groundwater protection
      • A2.4 Risk assessment and management
      • A2.5 System analysis and management process control and optimisation
      • A2.6 Monitoring and verification
      • A2.7 Materials and chemicals
      • A2.8 Incident and emergency management
      • A2.9 Employee training and awareness
      • A2.10 Research and development
      • A2.11 Documentation and reporting
      • A2.12 Community consultation and communication
      • A2.13 Hazard analysis and critical control point (HACCP)
      • A2.14 Quality management continuous improvement
      • A2.15 Reference web sites
    • Appendix 3: Derivation of microbial treatment targets for enteric pathogens
      • A3.1 Introduction to Quantitative Microbial Risk Assessment (QMRA)
      • A3.2 Adopting the QMRA approach in the Guidelines
      • A3.3 QMRA framework for the calculation of log₁₀ reduction values (LRVs)
      • A3.4 Defining the health outcome target
      • A3.5 Selection of reference pathogens
      • A3.6 Level of reference pathogen contamination in Australian source waters
      • A3.7 Consumption volume of unheated (unboiled) water per person per day
      • A3.8 Dose response relationships
      • A3.9 Disability Adjusted Life Years (DALY) burden per case
      • A3.10 Calculation of LRVs using the QMRA framework
      • A3.11 Interpretation of calculated LRVs for practical treatment guidance
      • A3.12 Understanding log₁₀ reductions
      • A3.13 References
  • Glossary
Powered by GitBook
LogoLogo

Australian Drinking Water Guidelines 6 2011, v3.9

  • Go back to NHMRC website
On this page
  • Guideline
  • Related chemicals
  • Human risk statement
  • General description
  • Typical values in Australian drinking water
  • Treatment of drinking water
  • Measurement
  • History of the health values
  • Health considerations
  • Derivation of the health-based guideline
  • References
  1. Part 5: Fact sheets
  2. Physical and chemical characteristics

Terbufos

(endorsed 2011)

Guideline

Based on human health concerns, terbufos in drinking water should not exceed 0.0009 mg/L.

Related chemicals

Terbufos (CAS 13071-79-9) belongs to the organophosphate group of chemicals. There are many other pesticides in this class, which includes chlorpyrifos, dimethoate, ethoprophos and ethion (Tomlin 2006).

Human risk statement

With good water quality management practices, the exposure of the general population to terbufos is expected to be well below levels that may cause health concerns.

Terbufos is an acutely poisonous organophosphate pesticide. If it is detected in water as a result of spillage or misuse at levels above 0.0009 mg/L, remedial action should be taken. Concentrations of terbufos greatly exceeding this guideline present an acute human health risk.

With good water quality management practices, pesticides should not be detected in source waters used for drinking water supplies. Persistent detection of pesticides may indicate inappropriate use or accidental spillage, and investigation is required in line with established procedures in the risk management plan for the particular water source.

General description

Uses: Terbufos is used as an insecticide and nematocide for the control of various above-ground insects, soil arthropods, and nematodes in agriculture, including food crops.

There are registered products containing terbufos in Australia. The products are granular formulations to be applied to the soil in agricultural settings. Data on currently registered products are available from the Australian Pesticides and Veterinary Medicines Authority.

Exposure sources: The main source of public exposure to terbufos and its metabolites is residues in food. Residue levels in food produced according to good agricultural practice are generally low.

Agricultural use of terbufos may potentially lead to contamination of source waters through processes such as run-off or entry into groundwater.

Typical values in Australian drinking water

No reports of terbufos in Australian drinking waters have been identified.

Treatment of drinking water

No specific data on the treatment of terbufos in drinking water have been identified.

Measurement

Terbufos can be measured in drinking water by solid phase extraction and capillary column gas chromatography–mass spectrometry (USEPA 2000). The practical limit of detection is 0.05 mg/L.

History of the health values

The current acceptable daily intake (ADI) for terbufos is 0.0002 mg per kg of bodyweight (mg/kg bw), based on a no-observed-effect level (NOEL) of 0.0025 mg/kg bw/day from a short-term (6-month dietary) study. The NOEL is based on decreased serum cholinesterase activity in dogs. The ADI incorporates a safety factor of 10, and was established in 1992.

The previous ADI of 0.00003 mg/kg bw/day set in 1980 was based on the same study and endpoint. The use of a safety factor of 100 was reconsidered in 1992 following an evaluation by the WHO. The 1992 review affirmed the validity of cholinesterase inhibition as an endpoint of toxicity, but decreased the safety factor to 10.

The previous health value was 0.0005 mg/L (NHMRC and NRMMC 2004).

Health considerations

Metabolism: Terbufos is readily absorbed via the gastrointestinal tract and is widely distributed in tissues and blood. In rats, terbufos was slowly excreted as metabolites (within 7 days), mainly in the urine. The major metabolites were S-methylated metabolites, which are of similar or lower toxicity to terbufos.

Acute effects: Terbufos has high acute oral toxicity in rats and high acute dermal toxicity in rabbits. The skin sensitisation potential of terbufos is unknown. Clinical signs of acute poisoning were typical of cholinesterase inhibition and included hyperexcitability, salivation, bronchoconstriction, headache, vomiting and other behavioural changes.

Short-term effects: Short-term dietary studies in rats and dogs reported symptoms indicative of nervous system toxicity. In 28-day dietary studies, decreased cholinesterase activity was reported at doses above 0.0125 mg/kg bw/day in rats and above 0.01 mg/kg bw/day in dogs. In a 3-month dietary study in rats and a 6-month dietary study in dogs, cholinesterase inhibition occurred at doses above 0.05 mg/kg bw/day in rats and 0.0025 mg/kg bw/day in dogs. The NOEL of 0.0025 mg/kg bw/day in dogs is the basis for the current ADI.

Long-term effects: Long-term dietary studies in rats and dogs reported symptoms indicative of nervous system toxicity. A 1-year dietary study in dogs reported inhibition of cholinesterase at the lowest dose tested, 0.015 mg/kg bw/day.

Carcinogenicity: Based on long-term dietary studies in mice or rats, there is no evidence of carcinogenicity for terbufos.

Genotoxicity: Terbufos is not considered to be genotoxic, based on in vitro or in vivo short-term studies.

Reproductive and developmental effects: Reproduction studies and developmental studies in rats reported no effects on reproductive parameters or foetal development other than that resulting from maternal toxicity.

Neurotoxicity: There was no clinical evidence of delayed or residual neurotoxicity or demyelination in 21-day toxicity studies in hens.

Poisons Schedule: Terbufos is included in Schedule 7 of the Standard for the Uniform Scheduling of Medicines and Poisons No.1, 2010 (the Poisons Standard)(DoHA 2010). Current versions of the Poisons Standard should be consulted for further information.

Derivation of the health-based guideline

The health-based guideline of 0.0009 mg/L for terbufos was determined as follows:

 0.0009 mg/L = 0.0025 mg/kg body weight/day x 70 kg x 0.1  2 L/day x 10 \text{ 0.0009 mg/L } = \dfrac{\text{ 0.0025 mg/kg body weight/day x 70 kg x 0.1 }}{\text{ 2 L/day x 10 }} 0.0009 mg/L = 2 L/day x 10  0.0025 mg/kg body weight/day x 70 kg x 0.1 ​

where:

  • 0.0025 mg/kg bw/day is the NOEL based on a medium-term (6-month) dietary study in dogs.

  • 70 kg is taken as the average weight of an adult.

  • 0.1 is a proportionality factor based on the assumption that 10% of the ADI will arise from the consumption of drinking water.

  • 2 L/day is the estimated maximum amount of water consumed by an adult.

  • 10 is the safety factor applied to the NOEL derived from animal studies. The safety factor of 10 was considered to provide an adequate margin of safety, as despite being derived from animal studies, the end-point (inhibition of plasma cholinesterase) is considered to be a very sensitive indicator.

References

NOTE: The toxicological information used in developing this fact sheet is from reports and data held by the Department of Health, Office of Chemical Safety.

DoHA (2010) The Poisons Standard; Schedule 1-Standard for the Uniform Scheduling of Medicines and Poisons, Department of Health and Ageing, Commonwealth of Australia, Canberra.

NHMRC (National Health and Medical Research Council), NRMMC (Natural Resources Management Ministerial Council) (2004). Australian Drinking Water Guidelines. National Water Quality Management Strategy, Paper 6. NHMRC and NRMMC.

Tomlin CD (ed) (2006). The Pesticide Manual: a world compendium, 14th edition, British Crop Production Council, UK.

USEPA (United States Environmental Protection Agency (2000). Method 526. Determination of selected semivolatile organic compounds in drinking water by solid phase extraction and capillary column gas chromatography/ mass spectrometry (GC/MS).

PreviousTerbacilNextTerbuthylazine

Last updated 5 months ago