🚰
Australian Drinking Water Guidelines
Go to NHMRC's website
  • Australian Drinking Water Guidelines
  • Copyright
  • Table of updates
  • Contents
  • Figures
  • Tables
  • Boxes
  • Introduction
    • Chapter 1: Introduction
      • 1.1 Guiding principles
      • 1.2 About the Guidelines
        • 1.2.1 Scope of the Guidelines
        • 1.2.2 Purpose of the Guidelines
        • 1.2.3 Structure of the Guidelines
      • 1.3 Water quality characteristics
        • 1.3.1 Introduction
        • 1.3.2 Health-based targets
        • 1.3.3 Microbial health-based targets
        • 1.3.4 Physical and chemical guideline values
        • 1.3.5 Radiological screening and reference values
      • 1.4 Community consultation
      • 1.5 Development of the Guidelines
        • 1.5.1 Acknowledgments
      • 1.6 Future revisions of the Guidelines
      • 1.7 References
  • Part 1: Management of Drinking Water Quality
    • Chapter 2: Framework for Management of Drinking Water Quality: overview
      • 2.1 A preventive strategy from catchment to consumer
      • 2.2 Structure of the Framework
      • 2.3 Benefits of the Framework
      • 2.4 The need for multi-agency involvement
      • 2.5 Applying the Framework
      • 2.6 Correlations of the Framework with other systems
    • Chapter 3: Framework for Management of Drinking Water Quality: the twelve elements
      • 3.1 Commitment to drinking water quality management (element 1)
        • 3.1.1 Drinking water quality policy
        • 3.1.2 Regulatory and formal requirements
        • 3.1.3 Engaging stakeholders
      • 3.2 Assessment of the drinking water supply system (element 2)
        • 3.2.1 Water supply system analysis
        • 3.2.2 Assessment of water quality data
        • 3.2.3 Hazard identification and risk assessment
      • 3.3 Preventive measures for drinking water quality management (element 3)
        • 3.3.1 Preventive measures and multiple barriers
        • 3.3.2 Critical control points
      • 3.4 Operational procedures and process control (element 4)
        • 3.4.1 Operational procedures
        • 3.4.2 Operational monitoring
        • 3.4.3 Corrective action
        • 3.4.4 Equipment capability and maintenance
        • 3.4.5 Materials and chemicals
      • 3.5 Verification of drinking water quality (element 5)
        • 3.5.1 Drinking water quality monitoring
        • 3.5.2 Consumer satisfaction
        • 3.5.3 Short-term evaluation of results
        • 3.5.4 Corrective action
      • 3.6 Management of incidents and emergencies (element 6)
        • 3.6.1 Communication
        • 3.6.2 Incident and emergency response protocols
      • 3.7 Employee awareness and training (element 7)
        • 3.7.1 Employee awareness and involvement
        • 3.7.2 Employee training
      • 3.8 Community involvement and awareness (element 8)
        • 3.8.1 Community consultation
        • 3.8.2 Communication
      • 3.9 Research and development (element 9)
        • 3.9.1 Investigative studies and research monitoring
        • 3.9.2 Validation of processes
        • 3.9.3 Design of equipment
      • 3.10 Documentation and reporting (element 10)
        • 3.10.1 Management of documentation and records
        • 3.10.2 Reporting
      • 3.11 Evaluation and audit (element 11)
        • 3.11.1 Long-term evaluation of results
        • 3.11.2 Audit of drinking water quality management
      • 3.12 Review and continual improvement (element 12)
        • 3.12.1 Review by senior executive
        • 3.12.2 Drinking water quality management improvement plan
      • 3.13 References
    • Chapter 4: Framework for the Management of Drinking Water Quality: application to small water supplies
      • 4.1 Introduction
      • 4.2 Applying the Framework
        • 4.2.1 Assessment of the drinking water supply
        • 4.2.2 Preventive measures for drinking water quality management
        • 4.2.3 Implementation of operational procedures and process control
        • 4.2.4 Verification of drinking water quality
      • 4.3 Individual household supplies
      • 4.4 Reference
  • Part 2: Description of Water Quality
    • Chapter 5: Microbial Quality of Drinking Water (Updated 2022)
      • 5.1 Introduction
      • 5.2 Microorganisms in drinking water
      • 5.3 Assessing microbial risk
      • 5.4 Enteric pathogens
        • 5.4.1 Enteric pathogens of concern in drinking water
        • 5.4.2 Contamination of source waters with enteric pathogens
        • 5.4.3 Management of risk from enteric pathogens
      • 5.5 Opportunistic pathogens
      • 5.6 Cyanobacteria
      • 5.7 Nuisance organisms
        • 5.7.1 Organisms causing taste and odour problems
        • 5.7.2 Organisms causing colour problems
        • 5.7.3 Deposits due to iron and manganese bacteria
        • 5.7.4 Corrosion problems due to iron and sulphur bacteria
        • 5.7.5 Problems caused by large numbers of microorganisms
      • 5.8 References
    • Chapter 6: Physical and Chemical Quality of Drinking Water
      • 6.1 Introduction
      • 6.2 Physical quality of drinking water
        • 6.2.1 An overview of physical characteristics
        • 6.2.2 Approach used in derivation of guidelines values for physical characteristics
      • 6.3 Chemical quality of drinking water
        • 6.3.1 Inorganic chemicals
        • 6.3.2 Organic compounds (Revised 2011)
        • 6.3.3 Approach used in derivation of guideline values for chemicals
      • 6.4 Differences between Australian and WHO guideline values
      • 6.5 National and international guideline values (2016)
      • 6.6 References
    • Chapter 7: Radiological Quality of Drinking Water (Updated 2022)
      • 7.1 Introduction
      • 7.2 Sources of radiation in the environment and in drinking water
      • 7.3 Health effects of radiation
      • 7.4 Exposure to radiation
      • 7.5 Units of radioactivity and radiation dose measurement
        • 7.5.1 Units of radioactivity and radiation dose
        • 7.5.2 Converting intake to radiation dose
        • 7.5.3 Average dose of radiation
      • 7.6 Approach for derivation of reference levels and screening values for radionuclides
        • 7.6.1 System for radiation protection
        • 7.6.2 Estimation of the dose from radionuclides in water
        • 7.6.3 Estimation of risk from low-level radiation
        • 7.6.4 Reference levels and screening values for drinking water
        • 7.6.5 Application of reference levels
        • 7.6.6 Remedial measures
      • 7.7 References
    • Chapter 8: Drinking Water Treatment Chemicals (Revised 2006)
      • 8.1 Introduction
      • 8.2 Scope and limit of application of this chapter
      • 8.3 Overview of chemical treatment processes
        • 8.3.1 Control of algae
        • 8.3.2 Coagulation and flocculation
        • 8.3.3 Adsorption
        • 8.3.4 Softening
        • 8.3.5 Oxidation
        • 8.3.6 Disinfection
        • 8.3.7 Adjustment of pH
        • 8.3.8 Addition of buffering capacity
        • 8.3.9 Corrosion inhibition
      • 8.4 Public health measures
        • 8.4.1 Fluoridation
      • 8.5 Assessment of Chemicals acceptable for use in drinking water treatment (revised 2016)
        • 8.5.1 Chemicals assessed prior to 2004
        • 8.5.2 New water treatment chemicals
      • 8.6 Quality assurance for drinking water treatment chemicals
        • 8.6.1 Risks associated with drinking water chemicals
        • 8.6.2 Managing risks
        • 8.6.3 Specifications for the supply of drinking water treatment chemicals
      • 8.7 Monitoring and analytical requirements
      • 8.8 Contaminants in drinking water treatment chemicals
      • 8.9 Useful contacts
      • 8.10 References
  • Part 3: Monitoring
    • Chapter 9: Overview of monitoring (Revised 2021)
      • 9.1 Introduction
      • 9.2 Monitoring overview
        • 9.2.1 Monitoring priorities
        • 9.2.2 Principles of monitoring frequency
        • 9.2.3 Catchment-to-consumer monitoring
      • 9.3 Developing a monitoring program
      • 9.4 Operational monitoring
        • 9.4.1 Operational characteristics
        • 9.4.2 Target criteria
        • 9.4.3 Critical limits at critical control points
        • 9.4.4 Corrective action
        • 9.4.5 Operational monitoring frequency
        • 9.4.6 Chlorination as a critical control point: an example
      • 9.5 Verification of drinking water quality
        • 9.5.1 Monitoring consumer satisfaction
        • 9.5.2 Drinking water quality monitoring
      • 9.6 Water quality issues beyond the point of supply
      • 9.7 Investigative studies and research monitoring
      • 9.8 Validation of barrier performance
      • 9.9 Incident and emergency response monitoring
      • 9.10 Reliability of monitoring data
        • 9.10.1 Sample integrity
        • 9.10.2 Methods
        • 9.10.3 Detection limits
        • 9.10.4 Measurement uncertainty
        • 9.10.5 Field testing
      • 9.11 Monitoring advice for small, remote or community-managed water supplies
      • 9.12 Assessing the significance of short-term exceedances of health-based guideline values
      • 9.13 References
    • Chapter 10: Monitoring for specific characteristics in drinking water (Updated 2022)
      • 10.1 Introduction
      • 10.2 Assessing safety: short-term evaluation of monitoring
        • 10.2.1 Short-term evaluation of operational monitoring
        • 10.2.2 Short-term evaluation of drinking water quality monitoring
      • 10.3 Assessing performance: long-term evaluation of monitoring
        • 10.3.1 Long-term evaluation of microbial performance
        • 10.3.2 Long-term evaluation of health-based chemical performance
        • 10.3.3 Long-term evaluation of aesthetic performance
        • 10.3.4 Long-term evaluation of consumer satisfaction
        • 10.3.5 Improvement plan
        • 10.3.6 Performance reporting
        • 10.3.7 Summary of guideline values for microbial, chemical and physical characteristics
        • 10.3.8 Summary of reference levels and screening values for radiological characteristics
      • 10.4 Reference
  • Part 4: Information sheets
    • 1. Disinfection
      • 1.1: Introduction to water treatment
      • 1.2: Overview of disinfection
      • 1.3: Disinfection with chlorine
      • 1.4: Chloramines
      • 1.5: Disinfection with chlorine dioxide
      • 1.6: Disinfection with ozone
      • 1.7: Disinfection with ultraviolet light
      • 1.8: Other disinfectants
    • 2. Sampling
      • 2.1: Sampling Information – handling requirements and preservation
      • 2.2: Radiological monitoring and assessment of performance (updated 2022)
    • 3. Statistics
      • 3.1: Statistics – Visualising data
      • 3.2: Statistics – Assessing data
      • 3.3: Statistics – Statistical principles
      • 3.4: Statistics – Control charts and trends
      • 3.5: Number of samples required
      • 3.6: Guidance for issuing and lifting boil water advisories
      • Attachments
  • Part 5: Fact sheets
    • Microorganisms
      • Microbial indicators
        • Bacteroides
        • Coliphages
        • Clostridium perfringens
        • Escherichia coli
        • Heterotrophic plate counts
        • Intestinal enterococci
        • Thermotolerant coliforms
        • Total coliforms
      • Bacteria
        • Aeromonas
        • Burkholderia pseudomallei
        • Campylobacter
        • Escherichia coli (E. coli) (pathogenic)
        • Helicobacter pylori
        • Klebsiella
        • Legionella
        • Mycobacterium
        • Pseudomonas aeruginosa
        • Salmonella
        • Shigella
        • Vibrio
        • Yersinia
      • Protozoa
        • Acanthamoeba
        • Blastocystis
        • Cryptosporidium
        • Cyclospora
        • Giardia
        • Naegleria fowleri
      • Cyanobacteria and their toxins
        • Cyanobacteria and their toxins
        • Cylindrospermopsin
        • Microcystins
        • Nodularin
        • Saxitoxins
      • Viruses
        • Adenovirus
        • Enterovirus
        • Hepatitis viruses
        • Norovirus
        • Rotavirus
    • Physical and chemical characteristics
      • Acephate
      • Acrylamide
      • Aldicarb
      • Aldrin and Dieldrin
      • Aluminium
      • Ametryn
      • Amitraz
      • Amitrole
      • Ammonia
      • Antimony
      • Arsenic
      • Asbestos
      • Asulam
      • Atrazine
      • Azinphos-methyl
      • Barium
      • Benomyl
      • Bentazone
      • Benzene
      • Beryllium
      • Bioresmethrin
      • Boron
      • Bromacil
      • Bromate
      • Bromoxynil
      • Cadmium
      • Captan
      • Carbaryl
      • Carbendazim/Thiophanate-methyl
      • Carbofuran
      • Carbon tetrachloride
      • Carboxin
      • Carfentrazone-ethyl
      • Chloral hydrate (Trichloroacetaldehyde)
      • Chlorantraniliprole
      • Chlordane
      • Chlorfenvinphos
      • Chloride
      • Chlorinated furanones
      • Chlorine
      • Chlorine dioxide, Chlorite, Chlorate
      • Chloroacetic acids: chloroacetic acid, dichloroacetic acid (DCA), trichloroacetic acid (TCA)
      • Chlorobenzene
      • Chloroketones
      • Chlorophenols
      • Chloropicrin
      • Chlorothalonil
      • Chlorpyrifos
      • Chlorsulfuron
      • Chromium
      • Clopyralid
      • Colour (True)
      • Copper
      • Cyanide
      • Cyanogen chloride
      • Cyfluthrin, Beta-cyfluthrin
      • Cypermethrin isomers
      • Cyprodinil
      • 2,4-D [(2,4-Dichlorophenoxy) acetic acid]
      • DDT (1,1,1-trichloro-di-(4-chlorophenyl) ethane)
      • Deltamethrin
      • Diazinon
      • Dicamba
      • Dichlorobenzenes
      • Dichloroethanes: 1,1-dichloroethane, 1,2-dichloroethane
      • Dichloroethenes: 1,1-dichloroethene (1,1-DCE), 1,2-dichloroethene (1,2-DCE)
      • Dichloromethane (methylene chloride)
      • 1,3-Dichloropropene
      • Dichlorprop/Dichlorprop-P
      • Dichlorvos
      • Diclofop-methyl
      • Dicofol
      • Diflubenzuron
      • Dimethoate
      • Diquat (ion), Diquat dibromide
      • Dissolved oxygen
      • Disulfoton
      • Diuron
      • 2,2-DPA
      • Endosulfan
      • Endothal
      • Epichlorohydrin
      • EPTC
      • Esfenvalerate
      • Ethion
      • Ethoprophos
      • Ethylbenzene
      • Ethylenediamine tetraacetic acid (EDTA)
      • Etridiazole
      • Fenamiphos
      • Fenarimol
      • Fenchlorphos
      • Fenitrothion
      • Fenthion
      • Fenvalerate
      • Fipronil
      • Flamprop-methyl
      • Fluometuron
      • Fluoride
      • Flupropanate
      • Formaldehyde
      • Glyphosate
      • Haloacetonitriles
      • Haloxyfop
      • Hardness (as calcium carbonate)
      • Heptachlor and heptachlor epoxide
      • Hexachlorobutadiene
      • Hexazinone
      • Hydrogen sulfide, Sulfide
      • Imazapyr
      • Iodine, Iodide
      • Iprodione
      • Iron
      • Lanthanum
      • Lead
      • Lindane
      • Maldison (Malathion)
      • Mancozeb
      • Manganese
      • MCPA
      • Mercury
      • Metaldehyde
      • Metham
      • Methidathion
      • Methiocarb
      • Methomyl
      • Methyl bromide
      • Metiram
      • Metolachlor/s-Metolachlor
      • Metribuzin
      • Metsulfuron-methyl
      • Mevinphos
      • Molinate
      • Molybdenum
      • Monochloramine
      • Naphthalophos
      • Napropamide
      • Nicarbazin
      • Nickel
      • Nitrate and nitrite
      • Nitrilotriacetic acid (NTA)
      • N-Nitrosodimethylamine (NDMA)
      • Norflurazon
      • Omethoate
      • Organotins: dialkyltins, tributyltin oxide
      • Oryzalin
      • Oxamyl
      • Paraquat
      • Parathion
      • Parathion-methyl
      • Pebulate
      • Pendimethalin
      • Pentachlorophenol
      • Per-fluoroalkyl and poly-fluoroalkyl substances (PFAS)
      • Permethrin
      • pH
      • Picloram
      • Piperonyl butoxide
      • Pirimicarb
      • Pirimiphos methyl
      • Plasticisers
      • Polihexanide
      • Polycyclic aromatic hydrocarbons (PAHs)
      • Profenofos
      • Promecarb
      • Propachlor
      • Propanil
      • Propargite
      • Propazine
      • Propiconazole
      • Propyzamide
      • Pyrasulfotole
      • Pyrazophos
      • Pyroxsulam
      • Quintozene
      • Radionuclides, Specific Alpha and Beta Emitting
      • Radium (radium-226 and radium-228)
      • Radon-222
      • Selenium
      • Silica
      • Silver
      • Simazine
      • Sodium
      • Spirotetramat
      • Styrene (vinylbenzene)
      • Sulfate
      • Sulprofos
      • Taste and Odour
      • Temephos
      • Temperature
      • Terbacil
      • Terbufos
      • Terbuthylazine
      • Terbutryn
      • Tetrachloroethene
      • Thiobencarb
      • Thiometon
      • Thiram
      • Tin
      • Toltrazuril
      • Toluene
      • Total dissolved solids
      • Triadimefon
      • Trichlorfon
      • Trichlorobenzenes
      • 1,1,1-Trichloroethane
      • Trichloroethylene (TCE)
      • Triclopyr
      • Trifluralin
      • Trihalomethanes (THMs)
      • Turbidity
      • Uranium
      • Vernolate
      • Vinyl chloride
      • Xylenes
      • Zinc
    • Drinking water treatment chemicals
      • Aluminium chlorohydrate
      • Aluminium sulfate (alum)
      • Ammonia
      • Ammonium sulfate
      • Calcium hydroxide
      • Calcium hypochlorite
      • Calcium oxide
      • Carbon, granulated activated
      • Carbon, powdered activated
      • Chlorine
      • Copper sulfate
      • Ferric chloride
      • Ferric sulfate
      • Hydrochloric acid
      • Hydrofluorosilicic acid
      • Hydrogen peroxide
      • Hydroxylated ferric sulfate
      • Ozone
      • Polyacrylamide
      • Polyaluminium chloride
      • Polyaluminium silica sulfates
      • Polydiallyldimethylammonium chloride
      • Potassium permanganate
      • Sodium aluminate
      • Sodium bicarbonate
      • Sodium carbonate
      • Sodium fluoride
      • Sodium fluorosilicate
      • Sodium hexametaphosphate
      • Sodium hydroxide
      • Sodium hypochlorite
      • Sodium silicate
      • Sodium tripolyphosphate
      • Sulfuric acid
      • Zinc orthophosphate
  • Appendices
    • Appendix 1: Additional guidance
      • A1.1 Introduction
      • A1.2 Water supply system analysis
      • A1.3 Assessment of water quality data
      • A1.4 Hazard identification
      • A1.5 Risk assessment
      • A1.6 Preventive measures and multiple barriers
      • A1.7 Critical control points
      • A1.8 Chlorination as an example of a critical control point
      • A1.9 References
    • Appendix 2: Further sources of information on drinking water quality management
      • A2.1 Drinking water quality management - general
      • A2.2 Catchment management and source water protection
      • A2.3 Groundwater protection
      • A2.4 Risk assessment and management
      • A2.5 System analysis and management process control and optimisation
      • A2.6 Monitoring and verification
      • A2.7 Materials and chemicals
      • A2.8 Incident and emergency management
      • A2.9 Employee training and awareness
      • A2.10 Research and development
      • A2.11 Documentation and reporting
      • A2.12 Community consultation and communication
      • A2.13 Hazard analysis and critical control point (HACCP)
      • A2.14 Quality management continuous improvement
      • A2.15 Reference web sites
    • Appendix 3: Derivation of microbial treatment targets for enteric pathogens
      • A3.1 Introduction to Quantitative Microbial Risk Assessment (QMRA)
      • A3.2 Adopting the QMRA approach in the Guidelines
      • A3.3 QMRA framework for the calculation of log₁₀ reduction values (LRVs)
      • A3.4 Defining the health outcome target
      • A3.5 Selection of reference pathogens
      • A3.6 Level of reference pathogen contamination in Australian source waters
      • A3.7 Consumption volume of unheated (unboiled) water per person per day
      • A3.8 Dose response relationships
      • A3.9 Disability Adjusted Life Years (DALY) burden per case
      • A3.10 Calculation of LRVs using the QMRA framework
      • A3.11 Interpretation of calculated LRVs for practical treatment guidance
      • A3.12 Understanding log₁₀ reductions
      • A3.13 References
  • Glossary
Powered by GitBook
LogoLogo

Australian Drinking Water Guidelines 6 2011, v3.9

  • Go back to NHMRC website
On this page
  • Guideline
  • General description
  • Typical values in Australian drinking water
  • Treatment of drinking water
  • Measurement
  • Health considerations
  • Derivation of guideline
  • References
  1. Part 5: Fact sheets
  2. Physical and chemical characteristics

Lanthanum

(endorsed 2017)

Guideline

Based on human health considerations, the concentration of lanthanum in drinking water should not exceed 0.002 mg/L.

General description

Lanthanum is an element in the rare earth group (also known as lanthanides group) that can enter water via run-off from agricultural soil where it has been used as fertiliser, from the weathering of rock, from specific discharges or use as a phosphate binder, and from leaching from the tailings of rare earth mining.

In water, lanthanum’s oxidation state is primarily trivalent and it may be present in varying amounts as dissolved lanthanum or as insoluble forms associated with particulates. The concentration of total lanthanum in raw drinking water sources in the Netherlands was reported to range between 0.0005 to 0.013 mg/L, although concentrations in surface waters within rare earth mining areas or downstream of some industrial activities may be much higher (de Boer et al 1996, Protano and Riccobono 2002, Kulaksiz and Bau 2011).

An assessment estimating the total daily intake of lanthanum in humans was not available.

Typical values in Australian drinking water

Australian drinking water supplies have not been routinely monitored for lanthanum. Limited analytical results from a small number of water sources in Australia indicate levels orders of magnitude lower than when lanthanum is applied for phosphate control.

The National Industrial Chemical Notification and Assessment Scheme (NICNAS) recommends regular monitoring of Australian drinking water reservoirs if they have been subject to the addition of a lanthanum-based water treatment product (NICNAS 2014). In this circumstance, as part of a drinking water supply system assessment, consideration should be given to the possibility of accumulation of lanthanum in the water or sediment following multiple applications of a lanthanum-based product.

Treatment of drinking water

It is expected that lanthanum levels in water will be reduced by the processes used to prepare water for drinking (e.g. coagulation, flocculation, sedimentation, filtration, pH correction, anti-scaling, or a combination of these) (NICNAS 2014).

Measurement

The concentration of lanthanum in water samples can be determined by inductively coupled plasma mass spectroscopy (ICP-MS) with a limit of reporting of less than 0.001 mg/L. The guideline value is for total lanthanum, so an analytical method should be used which measures both soluble and insoluble lanthanum.

Health considerations

In Australia, NICNAS reviewed the literature on lanthanum in its Secondary Notification Assessment for PhoslockTM (NICNAS 2014).

The health information for lanthanum is based on the data for soluble and insoluble lanthanum salts.

All lanthanum salts have very low oral bioavailability. The absorption and kinetics of lanthanum from lanthanum carbonate (a relatively insoluble salt) have been reasonably well studied in humans; it has an oral bioavailability of 0.00015–0.02%, but with a terminal half-life of 15–37 hours and only 1.7% of the absorbed dose excreted in urine (NICNAS 2014). The oral bioavailability of soluble forms of lanthanum may be one or two orders of magnitude higher than that of lanthanum carbonate (Pennick et al 2006, He et al 2007).

Several studies on the effects of human exposure to lanthanum carbonate, approved for medical use in non-pregnant adults with end-stage renal failure to prevent absorption of dietary phosphate, indicate that no adverse systemic effects were seen and the most frequently reported local effect following ingestion of the chemical is gastrointestinal in nature (Health Canada 2007, US FDA 2008, Swedish MPA 2006).

There is very little epidemiological data on lanthanum. The available published studies are poorly documented and inconclusive for determination of effects of lanthanum exposure due to the absence of direct exposure measurements and potential confounding factors, for example co-exposure to other chemicals in the environment (NICNAS 2014).

Lanthanum toxicity is caused by the free cation, with adverse systemic effects being observed in experimental animals from exposure to soluble lanthanum compounds. A number of oral repeat dose studies with lanthanum carbonate in a variety of animal species show no systemic toxicity relevant to humans; the observed local effect is gastric irritation due to high doses precipitating in the rodent stomach (NICNAS 2014). Repeated oral exposures of rodents to lanthanum chloride caused adverse systemic effects in the liver, and local irritation effects in the stomach (Cheng et al 2012, Cheng et al 2014, NICNAS 2014).

Studies in rodents of up to six months’ exposure to lanthanum chloride have reported that it can cause histopathological neurotoxicity, learning deficiency, small but measurable increases of lanthanum in the brain after high doses, and various changes in brain biochemistry (Briner et al 2000, Feng et al 2006a, Feng et al 2006b, He et al 2008, NICNAS 2014). The no-observed-adverse-effect-level (NOAEL) for lanthanum chloride established from the critical studies is 0.1 mg/kg bw/day, based on neurotoxicity (decreased numbers of brain cells) and learning decrements (NICNAS 2014). The equivalent amount of lanthanum ion is 0.06 mg La³+/kg bw/day.

There is no firm evidence that lanthanum is carcinogenic. The weight of evidence indicates that lanthanum is not mutagenic in tests with bacteria and that it does not damage DNA (NICNAS 2014).

Derivation of guideline

The guideline value for lanthanum in drinking water was derived as follows:

 0.002 mg/L = 0.06 mg/kg bw/day x 70 kg x 0.1  100 x 2 L/day \text{ 0.002 mg/L } = \dfrac{\text{ 0.06 mg/kg bw/day x 70 kg x 0.1 }}{\text{ 100 x 2 L/day }} 0.002 mg/L = 100 x 2 L/day  0.06 mg/kg bw/day x 70 kg x 0.1 ​

where:

  • 0.06 mg/kg bw/day is the La³+ NOAEL for neurotoxic and neurobehavioural effects in rats.

  • 70 kg is the average weight of an adult.

  • 0.1 is a proportionality factor based on the assumption that 10% of daily intake is attributable to drinking water.

  • 100 is the uncertainty factor to account for intra- and inter-species variations.

  • 2 L/day is the estimated maximum amount of water consumed by an adult.

Factors for ‘less than lifetime’ exposure and/or uncertainty in the ‘toxicological database’ are not recommended because a comprehensive database for lanthanum carbonate, consisting of many repeat oral dose investigations in different species, including lifetime carcinogenicity studies, indicates only local effects at the site of application (stomach) and a NOAEL of 100 mg/kg bw/day. These toxicological studies have been performed using an insoluble lanthanum salt and such insoluble forms may be in drinking water sources to variable extents, and included in the total lanthanum analytical measurement. That is, some of the measured lanthanum may be in a form that has much less toxicity than the soluble lanthanum chloride upon which the drinking water guideline is based.

This guideline value is based on the effects of lanthanum from chronic exposure. As such, occasional detections of lanthanum above the guideline value would not normally be a human health concern.

References

Briner W, Rycek RF, Moellenberndt A, Dannull K (2000). Neurodevelopmental effects of lanthanum in mice. Neurotoxicology and Teratology, 22(4):573-581.

Cheng J, Cheng Z, Hu R, Cui Y, Cai J, Li N, Gui S, Sang X, Sun Q, Wang L, Hong F (2014). Immune dysfunction and liver damage of mice following exposure to lanthanoids. Environmental Toxicology, 29(1):64-73.

Cheng J, Li N, Cai J, Cheng Z, Hu R, Zhang Q, Wan F, Sun Q, Gui S, Sang X, Wang L, Hong F (2012). Organ histopathological changes and its function damage in mice following long-term exposure to lanthanides chloride. Biological Trace Element Research, 145(3):361–368.

de Boer JL, Verweij W, van der Velde-Koerts T, Mennes W (1996). Levels of rare earth elements in Dutch drinking water and its sources. Determination by inductively coupled plasma mass spectrometry and toxicological implications. A pilot study. Water Research, 30(1):190-198.

Feng LX, Xiao HQ, He X, Li ZJ, Li FL, Liu NQ, Zhao YL, Juang YY, Zhang ZY, Chai ZF (2006a). Long-term effects of lanthanum intake on the neurobehavioral development of the rat. Neurotoxicology and Teratology, 28:119-124.

Feng LX, Xiao HQ, He X, Li ZJ, Li FL, Liu NQ, Zhao YL, Huang YY, Zhang ZY, Chai ZF (2006b). Neurotoxicological consequence of long-term exposure to lanthanum. Toxicology Letters, 165(2):112–120.

He X, Zhang ZY, Feng LX, Li ZJ, Yang JH, Zhao YL, Chai ZF (2007). Effects of acute lanthanum exposure on calcium absorption in rats. Journal of Radioanalytical and Nuclear Chemistry, 272(3):557-559.

He X, Zhang ZY, Zhang H, Zhao YL, Chai ZF (2008). Neurotoxicological evaluation of long-term lanthanum chloride exposure in rats. Toxicological Sciences, 103(2):354–361.

Health Canada (2007). Summary basis of decision. Fosrenol Lanthanaum carbonate hydrate Submission Control No 102240.

Kulaksiz S and Bau M (2011). Rare earth elements in the Rhine River, Germany: first case of anthropogenic lanthanum as a dissolved microcontaminant in the hydrosphere. Environment International 37(5):973-979.

NICNAS (2014). Phoslock, Existing Chemical Secondary Notification Assessment Report NA/899S. NICNAS, Australian Government Department of Health.

Pennick M, Dennis K, Damment SJP (2006). Absolute bioavailability and disposition of lanthanum in healthy human subjects administered lanthanum carbonate. Journal of Clinical Pharmacology, 46(7):738-746.

Protano G and Riccobono F (2002). High contents of rare earth elements (RREs) in stream waters of a Cu-Pb-Zn mining area. Environmental Pollution, 117(3):499-514.

Swedish MPA (2006). Public Assessment Report, Scientific discussion, Fosrenol (lanthanum) SE/H/481/01-04/E01. Lakemedelsverket – Sweden’s Medical Product Agency.

USFDA (2008). Fosrenol product information sheet. Revision date April 2008.

NOTE: Important general information is contained in PART II, Chapter 6

NOTE: Important general information is contained in PART II, Chapter 8

PreviousIronNextLead

Last updated 10 months ago